Double or nothing: Astronomers rethink quasar environment

March 13, 2018

In the Universe, galaxies are not distributed uniformly. There are some places, known as clusters, where dozens or hundreds of galaxies are found close together. Other galaxies are isolated. To determine how and why clusters formed, it is critical to investigate not only mature galaxy clusters as seen in the present Universe but also observe protoclusters, galaxy clusters in the process of forming.

Because the speed of light is finite, observing distant objects allows us to look back in time. For example, the light from an object 1 billion light-years away was actually emitted 1 billion years ago and has spent the time since then traveling through space to reach us. By observing this light, astronomers can see an image of how the Universe looked when that light was emitted.

Even when observing the distant (early) Universe, protoclusters are rare and difficult to discover. Only about 20 were previously known. Because distant protoclusters are difficult to observe directly, quasars are sometimes used as a proxy. When a large volume of gas falls towards the super massive black hole in the center of a galaxy, it collides with other gas and is heated to extreme temperatures. This hot gas shines brightly and is known as a quasar. The thought was that when many galaxies are close together, a merger, two galaxies colliding and melding together, would create instabilities and cause gas to fall into the super massive black hole in one of the galaxies, creating a quasar. However, this relationship was not confirmed observationally due to the rarity of both quasars and protoclusters.

In order to understand protoclusters in the distant Universe a larger observational sample was needed. A team including astronomers from the National Astronomical Observatory of Japan, the University of Tokyo, the Graduate University for Advanced Studies, and other institutes is now conducting an unprecedented wide-field systematic survey of protoclusters using the Subaru Telescope's very wide-field camera, Hyper Suprime-Cam (HSC). By analyzing the data from this survey, the team has already identified nearly 200 regions where galaxies are gathering together to form protoclusters in the early Universe 12 billion years ago.

The team also addressed the relationship between protoclusters and quasars. The team sampled 151 luminous quasars at the same epoch as the HSC protoclusters and to their surprise found that most of those quasars are not close to the overdense regions of galaxies. In fact, their most luminous quasars even avoid the densest regions of galaxies. These results suggest that quasars are not a good proxy for protoclusters and more importantly, mechanisms other than galactic mergers may be needed to explain quasar activity. Furthermore, since they did not find many galaxies near the brightest quasars, that could mean that hard radiation from a quasar suppresses galaxy formation in its vicinity.

On the other hand, the team found two "pairs" of quasars residing in protoclusters. Quasars are rare and pairs of them are even rarer. The fact that both pairs were associated with protoclusters suggests that quasar activity is perhaps synchronous in protocluster environments. "We have succeeded in discovering a number of protoclusters in the distant Universe for the first time and have witnessed the diversity of the quasar environments thanks to our wide-and-deep observations with HSC," says the team's leader Nobunari Kashikawa (NAOJ).

"HSC observations have enabled us to systematically study protoclusters for the first time." says Jun Toshikawa, lead author of the a paper reporting the discovery of the HSC protoclusters, "The HSC protoclusters will steadily increase as the survey proceeds. Thousands of protoclusters located 12 billion light-years away will be found by the time the observations finish. With those new observations we will clarify the growth history of protoclusters."
-end-


National Institutes of Natural Sciences

Related Quasars Articles from Brightsurf:

Australian research shows NASA's James Webb telescopes will reveal hidden galaxies
Simulations show it's possible to distinguish host galaxy from quasars, although still challenging due to the galaxy's small size on the sky.

Rare encounters between cosmic heavyweights
Astronomers using Maunakea Observatories - Subaru Telescope, W. M. Keck Observatory, and Gemini Observatory - have discovered three pairs of merging galaxies.

Cosmic quasars embrace 1970s fashion trend
Researchers have studied more than 300 quasars -- spinning black holes that produce beams of plasma.

Astrophysicists wear 3D glasses to watch quasars
A team of researchers has shown a way to determine the origins and nature of quasar light by its polarization.

Space dragons: Researchers observe energy consumption in quasars
Researchers, for the first time, have observed the accelerated rate at which eight quasars consume interstellar fuel to feed their black holes.

Astronomers reveal true colors of evolving galactic beasts
Astronomers have identified a rare moment in the life of some of the universe's most energetic objects.

Fast and furious: detection of powerful winds driven by a supermassive black hole
This is the first publication based entirely on data obtained with EMIR, an instrument developed in the Instituto de AstrofĂ­sica de Canarias (IAC) which analyses the infrared light gathered by the Gran Telescopio Canarias (GTC) from the Roque de los Muchachos Observatory (GarafĂ­a, La Palma).

Astronomers find quasars are not nailed to the sky
Until recently, quasars were thought to have essentially fixed positions in the sky.

Astronomers discover 83 supermassive black holes in the early universe
Astronomers from Japan, Taiwan and Princeton University have discovered 83 quasars powered by supermassive black holes that were formed when the universe was only 5 percent of its current age.

Seeing double could help resolve dispute about how fast the universe is expanding
How fast the universe is expanding has been puzzling astronomers for almost a century.

Read More: Quasars News and Quasars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.