Nav: Home

Where language pionieer Paul Broca and alien music meet

March 13, 2018

Vincent Cheung, along with Angela Friederici, has been investigating non-local dependencies in music and trying to determine how the human brain processes them. In language and music, dependencies are conceptual threads that bind two things together. Non-local dependencies bind non-adjacent items. For example, in pop music, the second instance of a verse, following a chorus, would have a non-local dependency with the first instance of the verse. Experientially, it is clear to us that we are hearing a sequence that we have heard before. According to Cheung, composers use such devices to build up our expectations and elicit strong emotional responses to the music. But how does the brain recognize these patterns and what does this have to do with Paul Broca?

Paul Broca was a famous French physician and anatomist whose work with aphasic patients in the 1800s led to the discovery of Broca's area; a small patch of the cerebral cortex just above the temple, specifically on the left side of the brain. Broca's area is critical for speech production and for the processing of, you guessed it, dependencies in language. For example, Broca's area is active when we detect violations to our well-learned grammatical rules. Surprisingly, despite Broca's area being one of the most studied human brain regions, neuroscientists are still not exactly sure what the same region does, on the other side of the brain.

Theory suggests the right hemisphere equivalent, or homologue, of Broca's area plays a similar role but for the processing of music instead of language. However, researchers have had difficulty demonstrating this, partly due to an inability to tease apart contributions of local and non-local dependencies to the structural hierarchy of the music. Enter Vincent Cheung's alien music.

Of course, Mr. Cheung doesn't really have authentic music from a distant world but that is how he referred to the music he developed for his study. He created a novel 'genre' of music described as, "randomly generated combinations of tone-triplets that were combined in a palindrome-like manner". While that may not sound very pleasant, the short stimuli were actually quite pleasing to the ear. Vincent's stimuli allowed the team to overcome the confounding hurtle of local dependencies. Importantly, there were sequences that conformed to a fabricated musical grammar as well as sequences that did not. This opened the door to determining where in the brain musical, non-local, dependencies are processed.

Musicians of varying expertise were invited to the laboratory to listen to Cheung's short compositions. Their task was to guess whether individual sequences were grammatical, or not, and through their correct and incorrect responses, determine the underlying grammatical rule. Once the rule was learned participants were invited to perform the task in an MRI scanner, allowing the researchers to see which brain areas were recruited. The researchers hypothesized bilateral activation of the inferior frontal gyrus, the anatomical structure housing Broca's area, during ungrammatical sequences compared to grammatical sequences. A clever manipulation also allowed them to dissociate between the processing of the non-local dependencies and the sheer demand on working memory. The complexity of the sequences was systematically varied such that more information would need to be held in memory in certain conditions.

The results, published in Scientific Reports this week, were consistent with their predictions, plus one surprise. The so-called Inferior frontal gyrus (IFG) was activated more during sequences which were ungrammatical than grammatical, although brain activity was more weighted towards the right hemisphere. That is, the brain became more active in the IFG during grammatical violations of the learned rule, but that tended to be more on the right than in Broca's area on the left. Frontal and parietal regions with known roles in working memory were also found to underlie the complexity dimension of the task. Interestingly, the researchers found that the degree of functional connectivity, between brain regions involved in detecting grammatical violations and those related to working memory, predicted the performance accuracy of the participants in determining whether a sequence was grammatical or not. This suggests the task is accomplished through the integration of information in memory with some form of neural computation of the musical grammar in the right homologue of Broca's area.

Vincent Cheung, first author of the underlying study, suggests the importance of the work lies in demonstrating that neurons capable of encoding non-local dependencies are not 'supra-modal'. Rather, subpopulations seem to be geared for different stimulus types, now including music.
-end-


Max Planck Institute for Human Cognitive and Brain Sciences

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Unlimited Memory: How to Use Advanced Learning Strategies to Learn Faster, Remember More and be More Productive
by Kevin Horsley (Author)

Memory Rescue: Supercharge Your Brain, Reverse Memory Loss, and Remember What Matters Most
by Daniel G. Amen (Author)

Christmas Memories Book (Maritime)
by Lynn Anderson (Illustrator)

Harry Potter Pensieve Memory Set
by Running Press (Author)

Menus: A Book for Your Meals and Memories
by Jacques Pépin (Author)

As You Grow: A Modern Memory Book for Baby
by Korie Herold (Author), Paige Tate Select (Producer)

The Memory Box: A Book About Grief
by Joanna Rowland (Author), Thea Baker (Illustrator)

Mosby's Pharmacology Memory NoteCards: Visual, Mnemonic, and Memory Aids for Nurses
by JoAnn Zerwekh MSN EdD RN (Author)

Grandmother's Journal: Memories and Keepsakes for My Grandchild
by Blue Streak (Author)

Memories for My Grandchild: A Keepsake to Remember (Grandparent's Memory Book)
by Suzanne Zenkel (Author), Margaret Rubiano (Illustrator)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.