Nav: Home

Biophysicists discover how small populations of bacteria survive treatment

March 13, 2018

Small populations of pathogenic bacteria may be harder to kill off than larger populations because they respond differently to antibiotics, a new study by Emory University finds.

The journal eLife published the research, showing that a population of bacteria containing 100 cells or less responds to antibiotics randomly -- not homogeneously like a larger population.

"We've shown that there may be nothing special about bacterial cells that aren't killed by drug therapy -- they survive by random chance," says lead author Minsu Kim, an assistant professor in the Department of Physics and a member of Emory's Antibiotic Resistance Center.

"This randomness is a double-edged sword," Kim adds. "On the surface, it makes it more difficult to predict a treatment outcome. But we found a way to manipulate this inherent randomness in a way that clears a small population of bacteria with 100 percent probability. By tuning the growth and death rate of bacteria cells, you can clear small populations of even antibiotic-resistant bacteria using low antibiotic concentrations."

The researchers developed a treatment model using a cocktail of two different classes of antibiotic drugs. They first demonstrated the effectiveness of the model in laboratory experiments on a small population of E. coli bacteria without antibiotic-drug resistance. In later experiments, they found that the model also worked on a small population of clinically-isolated antibiotic-resistant E. coli.

"We hope that our model can help in the development of more sophisticated antibiotic drug protocols -- making them more effective at lower doses for some infections," Kim says. "It's important because if you treat a bacterial infection and fail to kill it entirely, that can contribute to antibiotic resistance."

Antibiotic resistance is projected to lead to 300 million premature deaths annually and a global healthcare burden of $100 trillion by 2050, according to the 2014 Review on Antimicrobial Resistance. The epidemic is partly driven by the inability to reliably eradicate infections of antibiotic-susceptible bacteria.

For decades, it was thought that simply reducing the population size of the bacteria to a few hundred cells would be sufficient because the immune system of an infected person can clear out the remaining bacteria.

"More recently, it became clear that small populations of bacteria really matter in the course of an infection," Kim says. "The infectious dose -- the number of bacterial cells needed to initiate an infection -- turned out to be a few or tens of cells for some species of bacteria and, for others, as low as one cell."

It was not well understood, however, why treatment of bacteria with antibiotics sometimes worked and sometimes failed. Contributing factors may include variations in the immune responses of infected people and possible mutations of bacterial cells to become more virulent.

Kim suspected that something more fundamental was a factor. Research has shown unexpected treatment failure for antibiotic-susceptible infections even in a simple organism like the C. elegans worm, a common model for the study of bacterial virulence.

By focusing on small bacteria populations, the Emory team discovered how the dynamics were different from large ones. Antibiotics induce the concentrations of bacterial cells to fluctuate. When the growth rate topped the death rate by random chance, clearance of the bacteria failed.

The researchers used this knowledge to develop a low-dose cocktail drug therapy of two different kinds of antibiotics. They combined a bactericide (which kills bacteria) and a bacteriostat (which slows the growth of bacteria) to manipulate the random fluctuation in the number of cells and boost the probability of the cell death rate topping the growth rate.

Not all antibiotics fit the model and more research is needed to refine the method for applications in a clinical setting.

"We showed that the successful treatment of a bacterial infection with antibiotics is even more complicated than we thought," Kim says. "We hope this knowledge leads to new strategies to fight against infections caused by antibiotic-resistant bacteria."
-end-


Emory Health Sciences

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Bacteria: Staph, Strep, Clostridium, and Other Bacteria (Class of Their Own (Paperback))
by Judy Wearing (Author)

A Field Guide to Bacteria (Comstock Book)
by Betsey Dexter Dyer (Author)

I Contain Multitudes: The Microbes Within Us and a Grander View of Life
by Ed Yong (Author)

The Bacteria Book: The Big World of Really Tiny Microbes
by Steve Mould (Author)

Basic Medical Microbiology
by Patrick R. Murray PhD (Author)

Bacteria: A Very Short Introduction (Very Short Introductions)
by Sebastian G.B. Amyes (Author)

The Surprising World of Bacteria with Max Axiom, Super Scientist (Graphic Science)
by Agnieszka Biskup (Author), Anne Timmons (Author), Matt Webb (Author), Krista Ward (Author)

Molecular Genetics of Bacteria, 4th Edition
by Larry Snyder (Author), Joseph E. Peters (Author), Tina M. Henkin (Author), Wendy Champness (Author)

Are All Bacteria Dangerous? Biology Book for Kids | Children's Biology Books
by Baby Professor (Author)

Bacteria: The Benign, the Bad, and the Beautiful
by Trudy M. Wassenaar (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...