Infected 'zombie ants' face no discrimination from nest mates

March 13, 2018

Carpenter ants infected with a specialized parasitic fungus are not subjected to aggression or isolation from their nest mates, and they continue to share in the colony's food resources until they leave the nest for the last time to die, according to a study led by Penn State researchers.

The findings suggest that, although the fungus is deadly to infected individuals, it is only a chronic condition for the colony -- one that does not induce the kind of strong defensive measures thought to be common in social insect societies, the researchers said.

Studies have shown that fungal pathogens from the genus Ophiocordyceps -- known as "zombie ant fungus" -- control the behavior of carpenter ant workers, compelling them to climb vegetation and bite the veins or margins on the underside of leaves. The infected ants die, remaining attached to the vegetation postmortem. There, the fungus grows and releases spores onto the forest floor below, where they can infect other foraging ants.

"Previous work suggested that insect societies protect the colony through social immunity," said lead author Emilia Solá Gracia, postdoctoral scholar in biology, Penn State. "It was thought that during social interaction, ant workers detect infections in their peers and display aggression toward them or remove them from the nest.

"This fungus, which co-evolved with its host, takes 14 to 21 days to develop in infected individuals before compelling them to leave the nest and perform their last act. The question is, during this development, does the pathogen change how infected ants interact with others or alter the chemical cues they emit, which allows nest mates to detect the infection? Such detection would be optimal for the colony since infected workers die near foraging trails where the fungus releases spores that infect other members of the colony."

To test the hypothesis that infected individuals are recognized by healthy colony members, the research team looked at whether infected ant workers are attacked by nest mates, whether they spend more or less time in trophallaxis -- socially exchanging food -- and whether they are spatially separated from other colony members inside the nest.

The researchers collected ants from forested areas in South Carolina and established three colonies in a Penn State laboratory, each colony consisting of three groups of worker ants. One of the three groups was untreated -- healthy, the second was injected with a growth medium containing the parasitic fungus and a third received the growth medium alone. The ants were marked with unique dot patterns on their head, thorax and gaster so individuals could be followed over time.

They affixed a modified GoPro camera fitted with both an infrared lens and a macro lens on top of the colonies to capture recorded video virtually 24 hours daily.

While observing 1,240 hours of video footage, the researchers, who reported their findings in the online journal PLOS ONE, saw no attacks toward individuals injected with the fungus and found no significant difference in food sharing between infected and uninfected individuals.

The team did find that infected individuals spent considerably more time inside near the nest entrance and spent more time outside the nest than healthy workers.

"It could be that spending more time outside the nest is an early signal of fungal manipulation, which ultimately requires its host to leave the nest for fungal reproduction to occur," Solá Gracia said. "But the most significant finding is that this co-evolved parasite doesn't seem to directly affect social dynamics within the colony."

Taken together, these results suggest healthy individuals do not detect the parasite inside their nest mates, according to senior author David Hughes, associate professor of entomology and biology.

"The colony's inability to detect infected individuals allows the fungus to develop within the colony, while receiving food and protection from natural enemies that could damage or kill its ant host before the parasite has completed its development," he said. "Based on our observations and the biology of the fungus, we suggest that the pathogen is a chronic parasite of the colony that is able to survive without triggering strong behavioral defenses in the society -- in short, the parasite is able to fly under the radar of the colony's defenses."
-end-
Other researchers on the project were Charissa de Bekker, assistant professor of biology, University of Central Florida, and Ephraim Hanks, assistant professor of statistics, Penn State.

The National Science Foundation supported this work.

Penn State

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.