It's not only size, but scales that matter in some male moth antennae

March 13, 2018

Male moths have evolved intricate scale arrangements on their antennae to enhance detection of female sex pheromones, which allows them to keep their antennae small enough to maximise flying, new research suggests.

The work was led by researchers at the University of Melbourne with RMIT University, Walter and Eliza Hall Institute, Beijing Forestry University and is published today [EMBARGO 1100 14 March AEDT] in Proceedings of the Royal Society B.

Charles Darwin was among the first to consider how the type of antenna might influence how male insects detect sex pheromones produced by females, said Professor Mark Elgar from the University of Melbourne's School of Biosciences.

"Darwin predicted that sexual selection, arising from competition among males, would favour more elaborate antennae in male moths, as they ensure more rapid detection of female sex pheromones.

"Moth sex pheromones are detected by receptors on structures called sensilla on the antennae.

"Conventional wisdom is that the feathery, bipectinate antennae in moths, arranged like two combs with numerous branches, provide a larger surface area to house the pheromone-detecting sensilla.

"But what we see in nature is that the majority of moth species have simple, filamentous-shaped antennae, which led us to ask why, if they are better at detecting sex pheromones, bipectinate antennae are less common in moths."

To understand this evolutionary dilemma, the team used scanning electron microscopy (SEM) to build finely detailed three-dimensional models of the structure of the filamentous antennae in Heliozelidae moths. Then they used computational fluid dynamics techniques to simulate the airflow field around the model antennae of moths of different sizes and scale arrangements.

Dr Qike Wang led the experimental work which used nanoparticles in the fluid dynamic model to represent common sex pheromones and microparticles to represent environmental particles such as dust.

"We found that the angle of the scales concentrated the signal molecules to the downwind side of the antennae," said Dr Wang

"By creating an area with slow airflow around the antennae, the scales ensure pheromones linger within the detection zone, thereby increasing the efficiency with which they interact with receptor."

"Furthermore, the scales are also effective at diverting away larger contaminating particles, such as dust. In a sense, they sift through the different particles only retaining the favourable ones."

"This is particularly important for species, like moths, that cannot groom the full length of their antennae."

The study found the effect of the scales on retaining sex pheromones is much greater for smaller than larger moths. For smaller moths with filamentous antennae, antennal scales improve signal detection by 25-48 per cent.

The team also found different types of scale arrangements, which ranged from those aligned parallel to antennae to those arranged in complete rings around the antennae, changed how well the scales functioned to concentrate sex pheromones to the receptor regions in the sensilla.

"The scales increase the diameter of the antennae and must, therefore, increase aerodynamic drag. We predict that the ability to find a mate through improved pheromone detection is likely to be a benefit that offsets this cost," said Professor Elgar.

"More complex, bipectinate antennae may be favoured in large moths because they offer an additional surface area that can support more sensilla and thus a greater capacity to perceive chemical signals. Larger moths may be less impacted by reduction in flight speed due to their greater size and power."

"It's fascinating that Darwin's theory is still supported, but we needed modern techniques such as electron microscopy and computational fluid dynamics to confirm that it is antennal scales, and not size that make them more effective and detecting those crucial sex pheromones," Professor Elgar said.
-end-


University of Melbourne

Related Moths Articles from Brightsurf:

Moths strike out in evolutionary arms race with sophisticated wing design
Ultra-thin, super-absorbent and extraordinarily designed to detract attention, the wings of moths could hold the key for developing technological solutions to survive in a noisy world.

Airdropping sensors from moths
University of Washington researchers have created a sensor system that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination.

Air pollution renders flower odors unattractive to moths
Researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Virginia, USA, showed that tobacco hawkmoths lost attraction to the scent of their preferred flowers when that scent had been altered by ozone.

Lyin' eyes: Butterfly, moth eyespots may look the same, but likely evolved separately
The iconic eyespots that some moths and butterflies use to ward off predators likely evolved in distinct ways, providing insights into how these insects became so diverse.

New species of moths discovered in the Alps named after three famous alpinists
During a genetic project of the Tyrolean State Museums in Innsbruck, Austrian entomologist and head of the Natural Science Collections Peter Huemer used an integrative research approach to study four long-known, yet controversial European moths.

Deaf moths evolved noise-cancelling scales to evade prey
Some species of deaf moths can absorb as much as 85 per cent of the incoming sound energy from predatory bats -- who use echolocation to detect them.

Moths' flight data helps drones navigate complex environments
The flight navigation strategy of moths can be used to develop programs that help drones to navigate unfamiliar environments, report Ioannis Paschalidis at Boston University, Thomas Daniel at University of Washington, and colleagues, in the open-access journal PLOS Computational Biology.

Moths and perhaps other animals rely on precise timing of neural spikes
By capturing and analyzing nearly all of the brain signals sent to the wing muscles of hawk moths (Manduca sexta), researchers have shown that precise timing within rapid sequences of neural signal spikes is essential to controlling the flight muscles necessary for the moths to eat.

Lazy moths taste disgusting
Researchers have noticed that some moths are nonchalant when attacked by predatory bats.

Research explores how grape pests sniff out berries
A new study, published Nov. 21 in the Journal of Chemical Ecology, investigates how these pests find their target amid a sea of other plants in the landscape.

Read More: Moths News and Moths Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.