Nav: Home

Neural networks predict planet mass

March 13, 2019

Planets grow in stellar disks accreting solid material and gas. Whether they become bodies like Earth or Jupiter depends on different factors like the properties of the solids, the pressure and temperature in the disk and the already accumulated material. With computer models the astrophysicists try to simulate the growth process and determine the interior planetary structure. For given boundary conditions they calculate the masses of the gas envelope of a planet. "This requires solving a set of differential equations", explains Yann Alibert, science officer of the NCCR PlanetS at the University of Bern: "Solving these equations has been a specialty of the astrophysicists here in Bern for the past 15 years, but it is a complicated and time consuming process."

To speed up the calculations Yann Alibert and PlanetS associate Julia Venturini of the International Space Science Institute (ISSI) in Bern adopted a method that has already captured many other fields including the smartphone in our hand: deep learning. It is for instance used for face and image recognition. But this branch of artificial intelligence and machine learning has also improved automatic language translation and will be crucial for self-driving cars. "There is a big hype also in astronomy," says Alibert: "Machine learning has already been used to analyze observations, but to my knowledge we are the first to use deep learning for such a purpose." Alibert and Venturini publish their results in the journal Astronomy and Astrophysics (A&A).

Database of millions of planets

First, the researchers had to create a database. They calculated millions of possible interior structures of planets. "It took us three weeks to compute all these test cases using a code developed by Julia Venturini during her PhD in Bern," says Alibert. The next step was to decide the architecture of an artificial neural network, a set of algorithms that passes input data through mathematical operations and has the ability to learn without being explicitly programmed. "Then, we trained this network using our gigantic database," explains the astrophysicist: "Now our network is able to predict the mass of a planet being formed under certain conditions with a very good accuracy and tremendously faster than solving the differential equations."

The deep learning process is much more precise than previously developed methods to replace the solution of differential equations by some analytical formulas. These analytical formulas could predict that a planet should grow up to the mass of Jupiter, while in reality it could not have more mass than Neptune. "We show that our deep neural networks provide a very good approximation at the level of percents," summarizes Alibert. The researchers provide their results on the software development platform GitHub, so that colleagues working in planet formation all around the world benefit from them.

University of Bern

Related Planets Articles:

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
The stuff that planets are made of
UZH researchers have analyzed the composition and structure of faraway exoplanets using statistical tools.
Largest haul of extrasolar planets for Japan
Forty-four planets in solar systems beyond our own have been unveiled in one go, dwarfing the usual number of confirmations from extrasolar surveys, which is typically a dozen or less.
More Planets News and Planets Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at