Nav: Home

Bat flight model can inspire smarter, nimbler drones

March 13, 2019

Bats are among nature's best flyers--able to fly for long periods of time, maneouvre in mid-air with pinpoint precision and get into some very tight spaces. However, scientists have not fully understood exactly how bats manage to fly so well, until now.

Engineers at the University of British Columbia have captured the full complexity of bat flight in a three-dimensional computer model for the first time, potentially inspiring the future design of better drones and other aerial vehicles.

Researchers built a simple bat wing out of aluminum and exposed it to the currents in a wind tunnel to mimic the flapping, bending and twisting motion of a bat in flight. By tracking and measuring the impact of these movements on turbulent air flows and aeromechanical forces around the wing, they were able to build a complete model of bat flight.

The computer model, described in Computers & Fluids, is the first to comprehensively explain the flapping flight of bats in terms of the wing's geometry in motion, says Rajeev Jaiman, the study's senior author and a professor of mechanical engineering at UBC.

"Previous numerical models of bat flapping flight were too simplified or incomplete to be of real practical benefit," he added.

Bat wings are highly unique because they contain multiple joints and stretchable membranes that allow them to change shape and return to their original form countless times when they fly, explained Jaiman.

"While this wing morphing makes bat flight much more complicated compared to bird flight, it also makes bats the efficient flying machines that they are," he said.

The research team, which includes engineers from the National University of Singapore, plans to develop a physical bat model next, in collaboration with researchers at Brown University.

"We'll be working to further optimize the flapping motion," said Jaiman. "Once this is in place, we'll have a foundation for designing efficient, agile, automated bats - think smart drones that can fly as a flock and serve as tools for business or for emergency response."
-end-
"A novel 3D variational aeroelastic framework for flexible multibody dynamics: Application to bat-like flapping dynamics" was published online in November 2018 ahead of appearing in print in the February 2019 issue of Computers & Fluids . Contact lou.bosshart@ubc.ca for more information or to arrange interviews with the researcher.

University of British Columbia

Related Bats Articles:

How bats relocate in response to tree loss
Identifying how groups of animals select where to live is important for understanding social dynamics and for management and conservation.
Bats use private and social information as they hunt
As some of the most savvy and sophisticated predators out there, bats eavesdrop on their prey and even on other bats to collect a wide variety of information as they hunt.
There are way more species of horseshoe bats than scientists thought
Horseshoe bats are bizarre-looking animals with giant ears and elaborate flaps of skin on their noses that they use like satellite dishes.
What a group of bizarre-looking bats can tell us about the evolution of mammals
Bats with skulls and teeth adapted to a wide range of diets are helping scientists understand how major groups of mammals first evolved.
Fruit bats can transform echoes into images
A new Tel Aviv University study finds that fruit bats actually integrate vision and echolocation to flourish in the dead of night.
More Bats News and Bats Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...