Nav: Home

Researchers: Pesticides influence ground-nesting bee development and longevity

March 13, 2019

Results from a new study suggest that bees might be exposed to pesticides in more ways than we thought, and it could impact their development significantly.

The study, published in Nature's Scientific Reports, looks at the non-target effects of pesticides on ground-nesting bees, a group that actually makes up the majority of bee species. Non-target effects refer to the effects on organisms other than the ones intended. Much of the research currently available on non-target effects of pesticides has been limited to honey and bumble bees and their exposure to pesticides when collecting pollen and nectar.

While these previous studies have shown that pesticide consumption by honey and bumble bees can have important ecological consequences, this new study is one of the first of its kind to determine the effects of contact with pesticides, such as those that occur in soils, that other bee species might encounter.

"This is an important piece of work because it's one of the first studies to look at realistic concentrations of pesticides that you would find in the soil as a route of exposure for bees. It's a very under-explored route, especially for some of the more solitary species that nest in the ground," said Nick Anderson, graduate student in entomology, led the study with his advisor, Alex Harmon-Threatt, professor of entomology.

A key difference between ground-nesting bees and their honey and bumble bee cousins is their smaller nest sizes (both in size and number of bees) which are made by digging into the soil. Bee species that nest this way can stay in the ground up to 49 weeks out of the year, emerging for only 3 weeks to forage, mate, and lay eggs. This leaves a lot of time for the bees to be exposed to the chronic, low levels of pesticides found in the soil after agricultural land use.

The researchers were particularly interested in a class of pesticides called neonicotinoids. Derived from nicotine, neonicotinoids are widely used for their effectiveness against insects such as Japanese beetles and emerald ash borers, but they can be toxic to pollinators. They also have a long half-life, meaning they can persist in the soil for long periods of time. Anderson and Harmon-Threatt used bees that are very close relatives to ground-nesting species because they are better suited for testing in the lab and have been used in previous research to approximate impacts on ground-nesting species.

When the bees were exposed to neonicotinoids in the lab, the researchers looked at levels similar to those found in the field. Results showed that females grew larger and did not live as long, while males were smaller and lived much longer. This conclusion suggests that chronic and low-level exposure to pesticides might cause a hormetic response in bees, where, at low levels of pesticide exposure, bees appear to benefit in small ways. However, the long-term impacts of some of these changes might not be readily apparent. The researchers believe that these lower doses are causing changes in the bee's development, such as diverting energy from normal developmental processes to fortify physical and biochemical barriers to counter the effects of the pesticide.

"When you're doing neonicotinoid work on something like bees, I think people expect the conclusions to say whether it's good or it's bad, but a lot of the relationships we're seeing are more complicated than that. There are a lot of factors and developmental processes that can be affected," said Harmon-Threatt.

"As we develop new pesticides, we have to be able to understand the effects," said Anderson. "Our work is part of that kind of risk assessment. We want to know what the implications are for ground-nesting bees so that when we're using the land for agriculture or trying to restore it, we can minimize the impact on these species."

This study lays the foundation for the work that the Harmon-Threatt lab will be expanding upon in the field over the next five years. In 2018, Harmon-Threatt received a $1 million grant from the US Department of Agriculture's National Institute of Food and Agriculture to conduct research to better understand the role that soil contamination plays in bee diversity and conservation.
-end-
The paper, Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees, is available online.

This research was funded by a Clark Research Support Grant and a Lebus Fund Award through the School of Integrative Biology at the University of Illinois at Urbana-Champaign as well as by additional funds provided by the University of Illinois at Urbana-Champaign.

University of Illinois at Urbana-Champaign

Related Pesticides Articles:

Nanozymes -- efficient antidote against pesticides
Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents -- nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
USDA announces $1.8 million for research on next generation pesticides
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced $1.8 million in available funding to research new, environmentally friendly pesticides and innovative tools and strategies to replace an older treatment, methyl bromide.
Light therapy could save bees from deadly pesticides
Treating bees with light therapy can counteract the harmful effects of neonicotinoid pesticides and improve survival rates of poisoned bees, finds a new UCL study.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
Pesticides used to help bees may actually harm them
Honeybees from chlorothalanil-treated hives showed the greatest change in gut microbiome.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Electronic nose smells pesticides and nerve gas
Detecting pesticides and nerve gas in very low concentrations. An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven, Belgium, have made it possible.
Honeybees pick up 'astonishing' number of pesticides via non-crop plants
A Purdue University study shows that honeybees collect the vast majority of their pollen from plants other than crops, even in areas dominated by corn and soybeans, and that pollen is consistently contaminated with a host of agricultural and urban pesticides throughout the growing season.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Pesticides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".