Nav: Home

Researchers: Pesticides influence ground-nesting bee development and longevity

March 13, 2019

Results from a new study suggest that bees might be exposed to pesticides in more ways than we thought, and it could impact their development significantly.

The study, published in Nature's Scientific Reports, looks at the non-target effects of pesticides on ground-nesting bees, a group that actually makes up the majority of bee species. Non-target effects refer to the effects on organisms other than the ones intended. Much of the research currently available on non-target effects of pesticides has been limited to honey and bumble bees and their exposure to pesticides when collecting pollen and nectar.

While these previous studies have shown that pesticide consumption by honey and bumble bees can have important ecological consequences, this new study is one of the first of its kind to determine the effects of contact with pesticides, such as those that occur in soils, that other bee species might encounter.

"This is an important piece of work because it's one of the first studies to look at realistic concentrations of pesticides that you would find in the soil as a route of exposure for bees. It's a very under-explored route, especially for some of the more solitary species that nest in the ground," said Nick Anderson, graduate student in entomology, led the study with his advisor, Alex Harmon-Threatt, professor of entomology.

A key difference between ground-nesting bees and their honey and bumble bee cousins is their smaller nest sizes (both in size and number of bees) which are made by digging into the soil. Bee species that nest this way can stay in the ground up to 49 weeks out of the year, emerging for only 3 weeks to forage, mate, and lay eggs. This leaves a lot of time for the bees to be exposed to the chronic, low levels of pesticides found in the soil after agricultural land use.

The researchers were particularly interested in a class of pesticides called neonicotinoids. Derived from nicotine, neonicotinoids are widely used for their effectiveness against insects such as Japanese beetles and emerald ash borers, but they can be toxic to pollinators. They also have a long half-life, meaning they can persist in the soil for long periods of time. Anderson and Harmon-Threatt used bees that are very close relatives to ground-nesting species because they are better suited for testing in the lab and have been used in previous research to approximate impacts on ground-nesting species.

When the bees were exposed to neonicotinoids in the lab, the researchers looked at levels similar to those found in the field. Results showed that females grew larger and did not live as long, while males were smaller and lived much longer. This conclusion suggests that chronic and low-level exposure to pesticides might cause a hormetic response in bees, where, at low levels of pesticide exposure, bees appear to benefit in small ways. However, the long-term impacts of some of these changes might not be readily apparent. The researchers believe that these lower doses are causing changes in the bee's development, such as diverting energy from normal developmental processes to fortify physical and biochemical barriers to counter the effects of the pesticide.

"When you're doing neonicotinoid work on something like bees, I think people expect the conclusions to say whether it's good or it's bad, but a lot of the relationships we're seeing are more complicated than that. There are a lot of factors and developmental processes that can be affected," said Harmon-Threatt.

"As we develop new pesticides, we have to be able to understand the effects," said Anderson. "Our work is part of that kind of risk assessment. We want to know what the implications are for ground-nesting bees so that when we're using the land for agriculture or trying to restore it, we can minimize the impact on these species."

This study lays the foundation for the work that the Harmon-Threatt lab will be expanding upon in the field over the next five years. In 2018, Harmon-Threatt received a $1 million grant from the US Department of Agriculture's National Institute of Food and Agriculture to conduct research to better understand the role that soil contamination plays in bee diversity and conservation.
-end-
The paper, Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees, is available online.

This research was funded by a Clark Research Support Grant and a Lebus Fund Award through the School of Integrative Biology at the University of Illinois at Urbana-Champaign as well as by additional funds provided by the University of Illinois at Urbana-Champaign.

University of Illinois at Urbana-Champaign

Related Pesticides Articles:

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
FEFU scientist reported on concentration of pesticides in marine organisms
According to ecotoxicologist from Far Eastern Federal University (FEFU), from the 90s and during 2000s in the tissues of Russian Far Eastern mussels the concentration of organochlorine pesticides (OCPs) that had been globally used in agriculture in the mid-twentieth century has increased about ten times.
Hypertension found in children exposed to flower pesticides
Researchers at University of California San Diego School of Medicine found higher blood pressure and pesticide exposures in children associated with a heightened pesticide spraying period around the Mother's Day flower harvest.
Banned pesticides in Europe's rivers
Tests of Europe's rivers and canals have revealed more than 100 pesticides -- including 24 that are not licensed for use in the EU.
The persistence of pesticides threatens European soils
A study developed by researchers from the Diverfarming project finds pesticide residues in the soils of eleven European countries in six different cropping systems
Honeybees at risk from Zika pesticides
Up to 13 percent of US beekeepers are in danger of losing their colonies due to pesticides sprayed to contain the Zika virus, new research suggests.
Alternatives to pesticides -- Researchers suggest popular weeds
Research proves that extracts from S. nigrum and D. stramonium, globally existing weed species, may help to protect crop systems against agricultural pests.
Seeing pesticides spread through insect bodies
Osaka University-led team provides insights into the distribution of pesticides within insects using a newly developed method of insect sample preparation.
The more pesticides bees eat, the more they like them
Bumblebees acquire a taste for pesticide-laced food as they become more exposed to it, a behavior showing possible symptoms of addiction.
Research shows pesticides influence bee learning and memory
A large-scale study published by researchers from Royal Holloway University of London has drawn together the findings of a decade of agrochemical research to confirm that pesticides used in crop protection have a significant negative impact on the learning and memory abilities of bees.
More Pesticides News and Pesticides Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.