Worm nerve responses for good and bad

March 13, 2020

Nagoya University researchers and colleagues have revealed the nerve circuitry regulating the response of a tiny soil worm to changing temperatures. The findings, published in the journal Proceedings of the National Academy of Sciences, help clarify one way the nervous system translates external signals into behaviours.

One of the fundamental questions of neurobiology is: how does the brain determine if an external stimulus is good or bad? Animal behaviour depends on this ability. For example, the scent of a predator elicits a fear response, while the scent of a potential mate elicits mating behaviour.

The nematode Caenorhabditis elegans is about one millimetre long and lives in the soil, feeding on microbes. It is often used as a model organism for biological studies in diverse fields, such as development, neurobiology and aging.

Generally, a lab C. elegans will migrate towards a cooler temperature when placed in a warmer environment than the one it was cultivated in, and vice versa. Molecular neurobiologists Shunji Nakano and Ikue Mori of Nagoya University and colleagues wanted to understand the molecular and neurological underpinnings behind this behaviour.

Using genetic and imaging tools, the scientists found that a temperature-sensing nerve cell in the worms, called AFD, transmits signals that activate or inhibit its receiving nerve cell, called AIY.

The scientists exposed freely moving worms to either a good or bad external temperature stimulus. The first 'good' signal started below the worms' cultivation temperature and gradually warmed towards it. The other 'bad' signal started at the cultivation temperature and gradually warmed above it.

AFD was activated by both warming signals. But it then sent stimulating molecules to AIY in the case of the good signal, and inhibiting ones during the bad one. The result shows how the same nerve cell can send signals that convey opposite messages.

Genetic studies further revealed three specific genes, and the enzymes and proteins they encode, that are involved in this response: kin-4, mec-2, and dgk-1. "These three genes are evolutionarily conserved in mammals, including humans," says Nakano. "A similar mechanism thus might be present in the nervous systems of higher organisms."

The team next plans to identify other stimuli that elicit similar neuronal responses in C. elegans.
-end-


Nagoya University

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.