Nav: Home

Resolving inflammation: Could it prevent memory loss in Down syndrome and Alzheimer's?

March 13, 2020

Individuals with Down syndrome are at a much greater risk of developing Alzheimer's disease, with inflammation of the brain starting early in life and the risk of Alzheimer's reaching nearly 80% by the age of 60.

The root cause of Alzheimer's disease is unknown. However, its frequency in patients with Down syndrome suggests that targeting inflammation in preclinical models of that syndrome could be an attractive strategy for designing therapies to promote healthier aging.

In one such preclinical model of Down syndrome, administering specialized lipids, known as resolvins, reduced inflammation and prevented memory loss, according to a recent article in Glia.

The findings were reported by researchers at the Medical University of South Carolina (MUSC), the Center for Alzheimer's Research at the Karolinska Institute in Sweden and the Knoebel Institute for Healthy Aging at the University of Denver.

"We have an ancient pathway that helps us return our damaged bodies to normal, which is known as the resolution response," said lead author Eric D. Hamlett, Ph.D., assistant professor in the Department of Pathology and Laboratory Medicine at MUSC. "In our model, we can now engage this response with the specialized lipids and, in a more natural way, calm down long-term inflammation."

While the Down syndrome model does not produce the same brain 'tangles' that normally would be observed with Alzheimer's disease, constant brain inflammation begins early in life and leads to similar neuronal damage. In humans, long-term inflammation is often seen alongside other indicators of Alzheimer's in the brain, but it is not yet known how these conditions get started.

Chronic brain inflammation typically leads to progressive memory loss. Surprisingly, a sustained treatment regime with the lipid reversed memory loss in the Down syndrome model without having any adverse effects, reinforcing its role as a potential therapeutic.

The tragic progression of memory loss and dementia due to Alzheimer's represents a breakdown of the brain's ability to self-maintain and to limit wild fluctuations in condition. However, self-maintenance can be disrupted by injuries, pathogens and sometimes by aging.

The disruption of self-maintenance can manifest as prolonged inflammation, which can result in devastating effects if left unchecked. Down syndrome is one such condition that can result in this sustained inflammation response.

Typically, the inflammation caused by a disease is resolved by the body naturally. However, when the body cannot do so, long-term inflammation can result. With the body on high-alert but unable to rectify the problem, progressive damage can occur as our normal tissues are caught in the crossfire.

"Our bodies first need to be able to respond to a problem and then have a separate and equally important response to resolve the inflammation mechanism," explained Hamlett.

Gaining insights into the role of inflammation in a healthy brain could bring us closer to identifying key mechanisms in our body that are activated in response to damage and age. Understanding how these mechanisms are activated could allow us to control the balances our bodies must achieve every day, leading to breakthroughs in regenerative medicine and potential new therapies that halt the progression of dementia.

Brevity of inflammation is crucial to healthy healing, and using these naturally produced lipids may be the first step in understanding our body's most ancient system of recovery.
-end-
Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Medical University of South Carolina

Founded in 1824 in Charleston, the Medical University of South Carolina (MUSC) is the oldest medical school in the South, as well as the state's only integrated, academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and 700 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state's leader in obtaining biomedical research funds, in fiscal year 2018, MUSC set a new high, bringing in more than $276.5 million. For information on academic programs, visit http://musc.edu.

As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available, while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians' practice plan, and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2019, for the fifth consecutive year, U.S. News & World Report named MUSC Health the number one hospital in South Carolina. To learn more about clinical patient services, visit http://muschealth.org.

MUSC and its affiliates have collective annual budgets of $3 billion. The more than 17,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care.

Medical University of South Carolina

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.