Researchers at UT Southwestern, Rockefeller, attack riddle of cocaine addiction at molecular level

March 14, 2001

Dallas - March 15, 2001 - Researchers at UT Southwestern Medical Center at Dallas and Rockefeller University have uncovered new information about dopamine-related activity in the brain that may lead to better understanding of the long-term brain-cell changes associated with cocaine addiction and addiction recovery.

Their findings are published in today's issue of Nature.

The research targets specific changes related to two brain proteins following the administration of cocaine, which may go a long way in explaining the chemical process that changes brain pathways and cellular activity following multiple exposure to cocaine, said Dr. Eric Nestler, one of the authors of the paper, "Cdk5 regulates action of chronic cocaine."

Nestler is chairman of psychiatry at UT Southwestern. A renowned researcher in the molecular brain activity of drugs and alcohol and their effects on the brain, Nestler came to UT Southwestern in 2000 after serving as director of molecular psychiatry at Yale University and as a member of the Yale faculty since 1987.

"This study provides important information about how the brain reacts to cocaine after repeated administration," Nestler said. "Little is understood about the brain mechanisms involved in the demands for more and more of the stimulant. We do know that the user has to increase the dose to achieve the expected high. This study gives us insight into the way the drug works in the brain to produce chemical changes that lead to addiction. If we understand how the process works, we will then be able to develop methods of countering the interaction."

Nestler and his colleagues found that injecting cocaine into the brains of transgenic mice over a period of time led to changes in a brain-specific protein cyclin-dependent kinase 5, or Cdk5, which is triggered by changes in the levels of another protein, DFosB. In earlier studies these same researchers had established that Cdk5 leads to brain-cell changes thought to play a major role in cocaine addiction by regulating dopamine action. Dopamine, a chemical communicator involved in the passing of pleasurable sensations to the limbic area of the brain, is associated with the reputed "rush" of cocaine.

Nestler said that injecting cocaine repeatedly into mice causes accelerated motor activity, even doubling it in some cases. Increases in Cdk5 appear to counter this stimulated activity since it can be augmented when the animals are treated daily with a Cdk5 blocker, or inhibitor, called roscovitine.

The group of control animals that received daily doses of roscovitine doubled their motor activity in just an hour after being injected with cocaine, leading to the hypothesis that once the pathways are changed by continual exposure to cocaine, more of the drug is required to reach a "high."

"We believe that this study provides important information about how the brain adapts to increased levels of cocaine, giving us important insight not only to the mechanism of cocaine use but to that of other drugs," Nestler said.
Nestler worked with Dr. James Bibb, Dr. Paul Greengard and their colleagues at Rockefeller on the study, which was funded by the National Institute for Drug Abuse. Researchers from Yale; Kurume University School of Medicine in Fukuoka, Japan; and Florida State University also worked on the study.

UT Southwestern Medical Center

Related Cocaine Articles from Brightsurf:

Sleep-deprived mice find cocaine more rewarding
Sleep deprivation may pave the way to cocaine addiction. Too-little sleep can increase the rewarding properties of cocaine, according to new research in mice published in eNeuro.

Nucleus accumbens recruited by cocaine, sugar are different
In a study using genetically modified mice, a University of Wyoming faculty member found that the nucleus accumbens recruited by cocaine use are largely distinct from nucleus accumbens recruited by sucrose, or table sugar.

Astrocytes build synapses after cocaine use in mice
Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors.

Of all professions, construction workers most likely to use opioids and cocaine
Construction workers are more likely to use drugs than workers in other professions, finds a study by the Center for Drug Use and HIV/HCV Research (CDUHR) at NYU College of Global Public Health.

Chronic cocaine use modifies gene expression
Chronic cocaine use changes gene expression in the hippocampus, according to research in mice recently published in JNeurosci.

Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.

Born to run: just not on cocaine
A study finds a surprising response to cocaine in a novel strain of mutant mice -- they failed to show hyperactivity seen in normal mice when given cocaine and didn't run around.

Cocaine adulterant may cause brain damage
People who regularly take cocaine cut with the animal anti-worming agent levamisole demonstrate impaired cognitive performance and a thinned prefrontal cortex.

Setting affects pleasure of heroin and cocaine
Drug users show substance-specific differences in the rewarding effects of heroin versus cocaine depending on where they use the drugs, according to a study published in JNeurosci.

One in 10 people have traces of cocaine or heroin on their fingerprints
Scientists have found that drugs are now so prevalent that 13 percent of those taking part in a test were found to have traces of class A drugs on their fingerprints -- despite never using them.

Read More: Cocaine News and Cocaine Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to