Nav: Home

Tunable windows for privacy, camouflage

March 14, 2016

Say goodbye to blinds.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a technique that can quickly change the opacity of a window, turning it cloudy, clear or somewhere in between with the flick of a switch.

Tunable windows aren't new but most previous technologies have relied on electrochemical reactions achieved through expensive manufacturing. This technology, developed by David Clarke, the Extended Tarr Family Professor of Materials, and postdoctoral fellow Samuel Shian, uses geometry adjust the transparency of a window.

The research is described in journal Optics Letters.

The tunable window is comprised of a sheet of glass or plastic, sandwiched between transparent, soft elastomers sprayed with a coating of silver nanowires, too small to scatter light on their own.

But apply an electric voltage and things change quickly.

With an applied voltage, the nanowires on either side of the glass are energized to move toward each other, squeezing and deforming the soft elastomer. Because the nanowires are distributed unevenly across the surface, the elastomer deforms unevenly. The resulting roughness causes light to scatter, turning the glass opaque.

The change happens in less than a second.

It's like a frozen pond, said Shian.

"If the frozen pond is smooth, you can see through the ice. But if the ice is heavily scratched, you can't see through," said Shian.

Clarke and Shian found that the roughness of the elastomer surface depended on the voltage, so if you wanted a window that is only lightly clouded, you would apply less voltage than if you wanted a totally opaque window.

"Because this is a physical phenomenon rather than based on a chemical reaction, it is a simpler and potentially cheaper way to achieve commercial tunable windows," said Clarke.

Current chemical-based controllable windows use vacuum deposition to coat the glass, a process that deposits layers of a material molecule by molecule. It's expensive and painstaking. In Clarke and Shian's method, the nanowire layer can be sprayed or peeled onto the elastomer, making the technology scalable for larger architectural projects.

Next the team is working on incorporating thinner elastomers, which would require lower voltages, more suited for standard electrical supplies.

Harvard's Office of Technology Development has filed a patent application on the technology and is engaging with potential licensees in the glass manufacturing industry.
-end-
The research was supported by the National Science Foundation through grant CMMI-1333835 and in part by the MRSEC program of the national Science Foundation under Award number DMR 14-20570.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Nanowires Articles:

Nanowires, the future of electronics
The current demand for small-sized electronic devices is calling for fresh approaches in their design.
Improving silver nanowires for FTCEs with flash light interactions
A Korean research team led by Professor Keon Jae Lee of the Materials Science and Engineering Department at KAIST and Dr.
UC researchers use gold coating to control luminescence of nanowires
In electronics, the race for smaller is huge. Physicists at the University of Cincinnati are working to harness the power of nanowires, microscopic wires that have the potential to improve solar cells or revolutionize fiber optics.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Nanowires as sensors in new type of atomic force microscope
A new type of atomic force microscope (AFM) uses nanowires as tiny sensors.
Tiny crystals and nanowires could join forces to split water
Scientists are pursuing a tiny solution for harnessing one of the world's most abundant sources of clean energy: water.
A versatile method to pattern functionalized nanowires
A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices.
Newly discovered organic nanowires leave manmade technologies in their dust
A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in manmade nanotechnologies.
New research shows how nanowires can be formed
In an article published in Nature today, researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow.
New type of nanowires, built with natural gas heating
A new simple, cost-effective approach that may open up an effective way to make other metallic/semiconducting nanomaterials.

Related Nanowires Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".