Nav: Home

Genetic cause of neurological disease identified

March 14, 2016

Using the genetic information of two different families with three generations of disease, researchers have identified a new mutation responsible for a degenerative and ultimately fatal movement disorder. Through induced pluripotent stem cell techniques, researchers also grew neurons from one patient in the laboratory to be used in future experiments.

Spinocerebellar ataxia (SCA) is a genetic disease that causes wasting away of the cerebellum, the portion of the brain responsible for controlling voluntary muscle movement, like walking, speaking, and even the direction of our eyes.

Currently, SCA has no cure or treatment. The mutations responsible for about 30 percent of cases are still unidentified.

Two different families with SCA sought treatment at two different hospitals in Japan. After preliminary testing on the symptomatic individuals, doctors identified none of the known genetic mutations. Researchers at Hiroshima University then received the patient's genetic samples and began the process of searching for the new mutation.

After genetic sequencing of four family members with SCA, a research team led by Professor Hideshi Kawakami, MD, PhD, from the Department of Epidemiology at Hiroshima University used statistical analysis to compare the families' DNA to that of unrelated people without SCA. This statistical analysis allowed researchers to identify which genetic variation the family members with SCA shared that healthy people did not.

The gene responsible for causing both families' SCA is located on Chromosome 17. The gene, called CACNA1G, encodes the Cav3.1 protein. Cav3.1 serves as a type of ion channel, or gateway, between the inside of nerve cells and the rest of the body. Scientists in different fields of research already know Cav3.1 controls how many Calcium ions are allowed into nerves when they send an electrical impulse through the brain. Cav3.1 had never been linked to SCA before.

Changing a single letter in the DNA sequence of CACNA1G switches a single amino acid in the chain of 2377 amino acids that cells connect to build the Cav3.1 protein.

Researchers performed the experiments to examine the way the mutated Cav3.1 channel behaves in cells growing in a dish. This mutation makes the Cav3.1 channels open at a lower threshold, meaning they let Calcium into the cell differently from healthy cells.

"In the future, a drug modifying this channel may cure the patients," said Prof. Kawakami.

Skin cells from one patient were used in induced pluripotent stem cell experiments to grow this patient's neurons in the laboratory. These new neurons showed no obvious physical deformities, which might fit with normal SCA progression. Depending on which SCA mutation they have, some patients may not experience symptoms until middle-age.

"We might need some age-related factors to reproduce life-like cell behavior," said Prof. Kawakami.

Researchers plan to use the neurons in future experiments to study the disease-causing Cav3.1 under more life-like conditions and in greater detail.
-end-


Hiroshima University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".