Nav: Home

Aviation and volcanic ash: Don't build your model on sand!

March 14, 2016

Volcanic ash can damage jet engines, and Ludwig-Maximilians-Universitaet (LMU) in Munich volcanologists have developed a new empirical model for assessment of the risk. Their results show that tests using sand do not reflect the behavior of ash in this context.

Volcanic ash is hazardous to commercial aircraft because, when drawn into jet engines, it can severely damage the turbines as well as compromising the operation of other components. For this reason, the eruption of the volcano Eyjafjallajökull in Iceland in 2010 led to widespread disruption of air traffic over Europe and resulted in considerable economic losses. "Damage to the engines is primarily attributable to the deposition of melted ash on the vanes of the turbines," says Professor Donald Dingwell, Director of the Department of Earth and Environmental Sciences at LMU. "And one of the grounds for the extensive closure of airspace in 2010 was that nothing was known about the melting behavior of volcanic ash under the conditions found inside jet engines." He and his research group have now investigated the issue, and shown that the chemical composition of the ash, which varies depending on its source, plays a crucial role in determining how much damage it can cause. Furthermore, the new study shows that the standard tests, which use sand or dust particles as proxies, do not reproduce the effects of volcanic ash on jet engines. On the basis of these results, the LMU team has developed a model which enables them to provide more realistic estimates of the risk to aviation posed by volcanic ash. Their findings appear online in the journal Nature Communications.

Temperatures in working jet engines range between 1200°C and 2000°C. Under such conditions, volcanic ash particles melt and the molten material is deposited on the hot surfaces of the turbines. This in turn can lead to clogging of fuel nozzles, cooling ducts and other engine parts. In addition, ash particles may penetrate the protective ceramic coatings on the turbines, compromising their performance as thermal barriers and exacerbating damage. "The only available data concerning the effects of airborne particles on turbines come from outdated tests based on the use of sand," Dingwell points out. "However, in terms of its chemical composition, volcanic ash differs significantly from sand. Furthermore, ash varies widely in composition depending on which volcano it comes from.

Ash melts at lower temperatures than sand

The LMU researchers have therefore performed the first systematic analysis of the melting behavior of volcanic ash obtained from a variety of sources. They heated samples of ash from nine different volcanos at various rates up to a maximum temperature of 1650°C, thus simulating the range of temperatures found at different locations within commercial jet engines. Melting temperatures were found to depend strongly on the chemical composition of the ash: The higher the fraction of basic oxides in the sample, the lower the melting temperature. "With the aid of our data, we were able to develop an empirical model, which describes how the melting behavior of volcanic ash as a function of its chemical composition and the rate at which it is heated," Dingwell explains. "We also confirmed earlier reports that ash generally melts at significantly lower temperatures than dust particles or sand -- and consequently will be deposited at much higher rates on hot engine parts." He and his colleagues are therefore convinced that tests based on the use of sand are unsuitable for assessing the effects of volcanic ash on turbines, because they severely underestimate the degree of damage that the latter particulates can cause.

"With this model, we provide the basis for more accurate estimation of the effects of the deposition of volcanic ash in turbine engines," says Dingwell. The researchers now plan to broaden their database in order to extend the applicability of the model. They also intend to explore how jet engines can be rendered less susceptible to damage by volcanic ash - by developing deposition-resistant coatings for component surfaces.
-end-


Ludwig-Maximilians-Universität München

Related Behavior Articles:

Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
My counterpart determines my behavior
Whether individuals grow up in a working-class environment or in an academic household, they take on behaviors that are typical for their class -- so goes the hypothesis.
A gene required for addictive behavior
Cocaine can have a devastating effect on people. It directly stimulates the brain's reward center, and, more importantly, induces long-term changes to the reward circuitry that are responsible for addictive behaviors.
Supercomputing the emergence of material behavior
Chemists at the University of California, San Diego designed the first artificial protein assembly (C98RhuA) whose conformational dynamics can be chemically and mechanically toggled.
The neural circuitry of parental behavior
HHMI scientists have deconstructed the brain circuits that control parenting behavior in mice, and identified discrete sets of cells that control actions, motivations, and hormonal changes involved in nurturing young animals.
Parenting behavior in adoptive families
A new longitudinal study of adoptive families looked at whether symptoms of depression in adoptive fathers is also related to over-reactive parenting and behavior problems in children; the study also examined how social support networks affect parenting.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.