Nav: Home

Which neuron is more mature? Single cell transcriptome knows!

March 14, 2016

The human brain is extremely complex, containing billions of neurons forming trillions of synapses where thoughts, behavior and emotion arise. However, when an individual is performing a particular task, not many but only a few neural circuits are in action. The enormous cellular heterogeneity of the brain structure has made dissections of the molecular basis for neural circuitry function particularly challenging, because previous studies on genetic and epigenetic profiling using a block of brain tissues simply do not have the sufficient precision and accuracy to correspond to the activities of a few activated circuitries in the brain.

In the March issue of Springer's journal Protein & Cell, Chen et al. reported, for the first time, molecular gene expression signatures underlying human neuronal maturation judged by electrophysiological characteristics. The authors successfully employed "Patch-seq" technology whereby patch-clamp recording and single neuron transcriptome profiling were performed on the same human neurons derived from more primitive stem cells. The authors also implemented powerful bioinformatics analyses, including Weighted Gene Coexpression Network Analyses (WGCNA), to extrapolate important signature genes corresponding to immature and mature human neurons, which is unprecedented.

By cross-referencing published data to single neuron transcriptome profiled from fetal and adult human brains (though without electrophysiological analyses), 39 neuronal genes were identified, which could serve as generic biomarkers for human neuronal maturation. The precise role of these 39 genes in the neuronal maturation process remains to be determined in the future. On the other hand, a number of calcium signaling, mitochondrial function, and ubiquitination-related genes are consistently elevated when human neurons mature, underscoring the critical importance of these biological processes relating to neuronal function. It is expected that dysregulation of these processes might be core elements leading to neurodegeneration.

The technology of coupling electrophysiological recording and single cell transcriptome analysis plus the powerful WGCNA should, in the future, be widely used to delineate the molecular logic for neural circuitry wiring, function and plasticity, to ultimately understand the human brain, the mind, and major human neurological disorders.
Reference: Chen, X. et al (2016). Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation, Protein & Cell, DOI 10.1007/s13238-016-0247-8

The article is available online to anyone, anytime under open access:


Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".