Nav: Home

St. Jude research will guide development of new anti-influenza drugs

March 14, 2016

By analyzing the molecular details of how artificially created drug-resistant flu strains manage to survive treatment, St. Jude Children's Research Hospital scientists have developed insights to guide development of powerful new anti-influenza drugs. These compounds will target a viral enzyme critical to the virus' proliferation in the body.

The researchers published their findings today in the Proceedings of the National Academy of Sciences (PNAS). They were led by Richard Webby, Ph.D., a member of the St. Jude Department of Infectious Diseases, and Stephen White, D.Phil., chair of the St. Jude Department of Structural Biology.

Developing new anti-influenza drugs is critical because they are the only weapons that can initially battle an outbreak of new flu strains.

"It may take six months or more from identifying a new strain to actually having a vaccine specific to that strain," Webby said. "What's more, even a vaccine for the seasonal flu may be only 50 to 75 percent effective." Such an effectiveness gap may arise because new strains may appear after flu epidemiologists have decided which strains of the virus to target with the vaccine for a given flu season.

New anti-flu drugs are also needed because existing drugs aim at targets in the virus which could change or have already done so, creating resistant forms of viruses.

In their studies, the researchers explored how a highly promising class of anti-influenza drug targets a bit of viral machinery, called an endonuclease, essential for the virus to replicate. The endonuclease helps "disguise" viral genetic material to fool the infected cell into generating new virus.

The researchers analyzed how a prototype anti-flu drug called L-742,001 plugs into the critical functional region of the endonuclease, called the active site, to block its function. Investigators chose L-742,001 because it is a gangly molecule that attaches to the active site in many places. Thus, the researchers could explore many avenues to resistance--studying how the virus might mutate to alter the active site in different places.

In their first experiments, the researchers got some good news. The scientists found that the virus could not evolve resistance to L-742,001 when researchers exposed successive generations of the virus to the drug--as might happen in clinical use of the drug.

"This finding is an encouraging sign that under natural conditions the virus may not readily become resistant to this class of drug," Webby said.

Unable to induce the flu virus to naturally become drug-resistant, the researchers resorted to creating artificially resistant strains. The investigators produced viruses with mutations throughout the endonuclease protein and selected mutated viral strains that could survive the drug's onslaught. Then, Stephen White, D.Phil., and his colleagues analyzed the structure of those mutations.

That structural analysis of the resistant mutations established that drugs like L-742,001 actually targeted the endonuclease active site.

"We introduced mutations all over the molecule, but only those at the active site produced resistance," White said.

More specifically, the mutation studies identified regions of the active site that the virus could potentially mutate to evolve resistance to the L-742,001 class of drugs. This insight will help guide co-corresponding author Thomas Webb, Ph.D., of SRI International, who has been leading the synthesis of new drug molecules that don't plug into such regions, to avoid such potential resistance. White said progress has already been made in making improved anti-influenza drug candidates.

"We already have molecules that bind to the active site much, much better than L-742,001, and stay away from one of the pockets that could evolve resistance," White said. "And these findings give us more insight into designing drugs that avoid that region."

The researchers issued one caution: although the flu virus exposed to the drug did not naturally evolve resistance, it could develop resistance under continued "drug pressure."

"For example," Webby said, "the virus might develop and maintain resistance in the context of a family where multiple people are using such a drug." However, he added: "Our study suggests that these resistant mutants probably can't compete with natural viruses but by keeping the drug pressure on they do have the advantage."

White said anti-viral drug research in general could benefit from the St. Jude approach to artificially generating resistant mutants and analyzing their structure.

"It's certainly quite important that researchers perform the standard experiments of exposing a virus to drugs to see if resistance develops," White said. "But this technique of generating mutants adds an important new dimension that enables researchers to confirm the targets of antivirals and to further probe the nature of potential resistance."
-end-
The study's other authors are Min-Suk Song, formerly of St. Jude and now at Chungbuk University, South Korea; Sun-Woo Yoon, formerly of St. Jude and now at Korea Research Institute of Bioscience and Biotechnology, South Korea; Trushar Jeevan, Thomas Fabrizio, Gyanendra Kumar, Zhenmei Li, William Shadrick and Peter Slavish, all of St. Jude; and Wei Zhou of SRI International.

The research was supported by a grant (AI098757) from the National Institutes of Health (NIH); a grant (CA21765) from the National Cancer Institute, part of the NIH; contracts (HHSN266200700005C, HHSN272201400006C) from the National Institute of Allergy and Infectious Diseases, part of the NIH; and ALSAC.

St. Jude Children's Research Hospital

Related Virus Articles:

How the Zika virus can spread
The spread of infectious diseases such as Zika depends on many different factors.
Fighting the herpes virus
New insights into preventing herpes infections have been published in Nature Communications.
Strategies of a honey bee virus
Heidelberg, 23 October 2019 - The Israeli Acute Paralysis Virus is a pathogen that affects honey bees and has been linked to Colony Collapse Disorder, a key factor in decimating the bee population.
Tracking the HI virus
A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Smartphone virus scanner is not what you think
The current leading method to assess the presence of viruses and other biological markers of disease is effective but large and expensive.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
Catch a virus by its tail
At a glance: Research uncovers key mechanism that allows some of the deadliest human RNA viruses to orchestrate the precise copying of the individual pieces of their viral genome and replicate.
Developing a vaccine against Nipah virus
Researchers developed a novel recombinant vaccine called NIPRAB that shows robust immunization against Nipah virus in animal models and may be effective against other viruses in the same family.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
More Virus News and Virus Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab