Nav: Home

New drug combination shows promise against childhood brain cancer

March 14, 2016

La Jolla, Calif., March 14, 2016 -- Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a new combination therapy for the most aggressive form of medulloblastoma, a fast growing type of pediatric brain cancer. The study was published online today in Cancer Cell, and is expected to lead to a clinical trial to confirm the benefits of the novel drug combination.

"Our goal was to identify drugs with minimal toxicity that we can move quickly from the laboratory to the clinic, where new therapeutic options are desperately needed," said Robert Wechsler-Reya, Ph.D., director of the Tumor Initiation and Maintenance Program at SBP and senior author of the study. "Using high-throughput drug screening, we identified a compound that cooperates with a second drug to inhibit tumor growth in vitro and in vivo."

Medulloblastoma, a fast-growing cancer that arises in the cerebellum, is diagnosed in about 400 children annually in the U.S., making it the most common malignant brain tumor in children. Success rates for treating this cancer are improving, but lag behind those for other pediatric cancers.

Of the four distinct forms of medulloblastoma, patients with Group 3 tumors have the worst prognosis -- only 40 percent of these patients become long-term survivors, compared to 80 percent of other medulloblastoma patients. Most Group 3 medulloblastoma cancers have high levels of the MYC oncogene, which causes cells to divide uncontrollably and form tumors.

Using mice with Group 3 medulloblastoma tumors, the research team demonstrated that the combination of two drugs, histone deacetylase inhibitors (HDACIs) and phosphatidylinositol 3-kinase inhibitors (PI3KIs), potently kill mouse and human medulloblastoma cells with minimal toxicity to normal cells.

"Our initial screen identified several HDACIs that killed MYC-activated medulloblastoma cells without harming normal cells." said Yanxin Pei, Ph.D., assistant professor at Children's National Medical Center in Washington, D.C. and co-first author of the study. "The most potent of these compounds, panobinostat, is in clinical trials for other cancers but has not been tested for medulloblastoma," he said.

"Additional studies revealed that panobinostat works by promoting the activity of FOXO1, a gene that interferes with the MYC oncogene," said Kun-Wei (Ken) Liu, Ph.D., a postdoctoral fellow in Wechsler-Reya's lab and co-lead author. "We figured that panobinostat and a PI3KI -- also known to activate FOXO1 -- might synergize to block cancer cell survival. Indeed, the combination therapy significantly improved survival of mice with human MYC tumors compared to each drug on its own."

"This study highlights the value of high-throughput drug screening to identify therapies that are effective for specific types of disease," said Wechsler-Reya. "It also demonstrates how combinations of drugs can be much more effective than single agents.

"In general, clinical trials for medulloblastoma are challenging because of the limited number of patients. Moreover, given the variability of the disease, most therapies will only work on a subset of patients. Figuring out which patients will respond to which therapies is a major goal of research in the field. If we can tailor therapies based on the genetic makeup of the tumor -- a strategy commonly referred to as personalized medicine -- this could have an enormous impact on patients with this disease," according to Wechsler-Reya.
-end-
This study was performed in collaboration with investigators at Children's National Medical Center, Washington, DC; the University of California, San Diego and Rady Children's Hospital, San Diego; the Hospital for Sick Children, Toronto, Canada; the German Cancer Research Center (DKFZ), Heidelberg, Germany; Texas Children's Cancer Center at Baylor College of Medicine, Houston, TX; Stanford University School of Medicine; and Fred Hutchinson Cancer Research Center and Seattle Children's Hospital.

The research was supported by funding from the National Cancer Institute, Alex's Lemonade Stand Foundation, CureSearch for Children's Cancer, and the California Institute for Regenerative Medicine.

About Sanford Burnham Prebys Medical Discovery Institute

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit research organization that blends cutting-edge fundamental research with robust drug discovery to address unmet clinical needs in the areas of cancer, neuroscience, immunity, and metabolic disorders. The Institute invests in talent, technology, and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs more than 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org. The Institute can also be found on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Sanford-Burnham Prebys Medical Discovery Institute

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".