Nav: Home

Cellular protein plays important role in aggressive childhood cancer

March 14, 2016

UCLA scientists have uncovered how a cellular protein contributes to an aggressive form of leukemia prevalent in young children. The discovery is an important step forward in the effort to better understand and treat aggressive childhood leukemia.

The study, which is currently under embargo, will be published in the Journal of Clinical Investigation.

"Certain subtypes of leukemia are very hard to treat and typically children with these subtypes have poor prognosis," said Dr. Dinesh Rao, the study's senior author and a member of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. "Pinpointing specific differences in how cancer cells function is critical in the development of targeted treatments, especially for these types of aggressive cancers that often recur and don't respond well to standard treatments like chemotherapy."

Leukemia is a cancer of the blood-forming tissues -- for example bone marrow, which contains the stem cells that give rise to every mature blood cell. In leukemia, genetic mutations cause white blood cells to multiply abnormally, affecting the body's immune system and inhibiting its ability to fight infection.

The most common cancer in children is called B-acute lymphoblastic leukemia, also known as B-ALL. It is a fast-growing cancer that starts in white blood cells called B cells, and it is often successfully treated with chemotherapy. However, genetic mutations in a gene called mixed lineage leukemia, or MLL, lead to an aggressive subtype of B-ALL known as MLL-rearranged, which is the most common type of acute lymphoblastic leukemia in infants. This subtype is much harder to treat; it often recurs, and survival rates are poor.

Rao and the team of investigators focused their research on the difference between MLL-rearranged and other forms of leukemia. The team started by analyzing bone marrow samples from children with B-ALL and cataloging every protein present in the leukemia cells. Then, they focused on which proteins were more prevalent in the MLL-rearranged subtype. A specific protein called IGF2BP3 stood out due to its pervasiveness in the cells and its ability to bind to RNA messages within the cell.

RNA messages are copies of small snippets of DNA that move out of the cell nucleus to be converted into proteins. Certain proteins cause cells to grow and divide when needed. Too little or too much production of these critical proteins can cause disease.

Researchers had known that the IGF2BP3 protein is present in cancerous cells and tumors, but the protein's function was unknown until now. Rao and the research team found that it plays an important role in the development of the MLL-rearranged subtype of leukemia by regulating various RNA messages that contribute to the disease.

Collaborating with coauthor Jeremy Sanford of UC Santa Cruz, the team looked closely at the role IGF2BP3 played within the leukemia cells. They discovered that IGF2BP3 binds to and stabilizes hundreds of leukemia-promoting RNA messages and consequently increases how much protein is made, resulting in an environment that is conducive to leukemia cell growth.

The team then added IGF2BP3 to mouse bone marrow. This caused atypical growth of blood-forming stem cells that were more likely to produce the abnormal B cells most common in B-ALL. These abnormal blood cells showed increased levels of the leukemia-promoting RNA messages, which is why they were able to grow more quickly. The researchers also found that removing the IGF2BP3 protein from leukemia cells led to decreases in leukemia-promoting messages, which in turn killed the leukemia cells.

"Our findings tell me that IGF2BP3's role in aggressive leukemia is quite significant," said Rao, who is an assistant professor of pathology and laboratory medicine in the UCLA David Geffen School of Medicine and a member of the UCLA Jonsson Comprehensive Cancer Center. "Further research is needed to characterize how we can potentially remove or block this protein to stop the proliferation of leukemia cells."

The next steps in the research include determining whether the IGF2BP3 protein plays a role in other types of leukemia, and testing drugs or compounds that might inhibit the protein and effectively kill leukemia cells in patients.
The research was supported by the National Institutes of Health, the Sidney Kimmel Foundation for Cancer Research, the Eugene V. Cota-Robles Grant, the Jonsson Comprehensive Cancer Center and the UCLA Broad Stem Cell Research Center.

About Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

To learn more about the center, visit our website at

University of California - Los Angeles Health Sciences

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".