Nav: Home

Light illuminates the way for bio-bots

March 14, 2016

CHAMPAIGN, Ill. -- A new class of miniature biological robots, or bio-bots, has seen the light - and is following where the light shines.

The bio-bots are powered by muscle cells that have been genetically engineered to respond to light, giving researchers control over the bots' motion, a key step toward their use in applications for health, sensing and the environment. Led by Rashid Bashir, the University of Illinois head of bioengineering, the researchers published their results in the Proceedings of the National Academy of Sciences.

"Light is a noninvasive way to control these machines," Bashir said. "It gives us flexibility in the design and the motion. The bottom line of what we are trying to accomplish is the forward design of biological systems, and we think the light control is an important step toward that."

Bashir's group previously demonstrated bio-bots that were activated with an electrical field, but electricity can cause adverse side effects to a biological environment and does not allow for selective stimulation of distinct regions of muscle to steer the bio-bot, Bashir said. The new light-stimulation technique is less invasive and allows the researchers to steer the bio-bots in different directions. The bio-bots turn and walk toward the light stimulus, Bashir said.

The researchers begin by growing rings of muscle tissue from a mouse cell line. The muscle cells have a gene added so that a certain wavelength of blue light stimulates the muscle to contract, a technique called optogenetics. The rings are looped around posts on 3-D-printed flexible backbones, ranging from about 7 millimeters to 2 centimeters in length.

"The skeletal muscle rings we engineer are shaped like rings or rubber bands because we want them to be modular," said graduate student Ritu Raman, the first author of the paper. "This means we can treat them as building blocks that can be combined with any 3-D-printed skeleton to make bio-bots for a variety of different applications."

In addition to the modular design, the thin muscle rings have the advantages of allowing light and nutrients to diffuse into the tissue from all sides. This contrasts with earlier bio-bot designs, which used a thick strip of muscle tissue grown around the skeleton.

The researchers tried skeletons of a variety of sizes and shapes to find which configurations generated the most net motion. They also exercised the muscle rings daily, triggering the muscle with a flashing light, to make them stronger so that the bots moved farther with each contraction.

"This is a much more flexible design," Bashir said. "With the rings, we can connect any two joints or hinges on the 3-D-printed skeleton. We can have multiple legs and multiple rings. With the light, we can control which direction things move. People can now use this to build higher-order systems."

This work was part of the Emergent Behaviors of Integrated Cellular Systems project, funded by the National Science Foundation. EBICS received a five-year, $25 million renewal in fall 2015, allowing Bashir and colleagues to continue to develop bio-bots technology for a variety of applications in diagnostics, medicine and sensing.
-end-
Bashir also is affiliated with the Micro and Nanotechnology Laboratory, the departments of electrical and computer engineering and of mechanical science and engineering, the Frederick Seitz Materials Research Laboratory and the Institute for Genomic Biology at the U. of I.

To reach Rashid Bashir, call 217-333-1867; email rbashir@illinois.edu.

The paper "Optogenetic Skeletal Muscle-Powered Adaptive Biological Machines" is available from PNAS or the News Bureau.

University of Illinois at Urbana-Champaign

Related Muscle Tissue Articles:

Higher alcohol consumption leads to greater loss of muscle tissue in postmenopausal women
Both aging and menopause are known to affect sarcopenia, which is a loss of muscle mass and strength, which in turn affects balance, gait, and overall ability to perform tasks of daily living.
Let there be tissue
Near-infrared light proves an effective and precise tool for engineering tissues from stem cells.
Keratin hydrogels show significant potential to regenerate lost muscle tissue & function
The use of human hair-derived keratin biomaterials to regenerate skeletal muscle has shown promise in new research that documents significant increases in both new muscle tissue formation and muscle function among mouse models of volumetric muscle loss.
New insights on triggering muscle formation
A team of scientists led by Lorenzo Puri, M.D., Ph.D., has identified a previously unrecognized step in stem cell-mediated muscle regeneration.
Atomic resolution of muscle contraction
Osaka University researchers capture atomic images of muscle molecules in action, giving possibility of new nanomachines.
Helper molecule reverses degeneration of muscle in mouse model of tissue aging, wasting
Maintaining proper levels of an essential helper molecule is crucial for optimal muscle function.
Protein found to bolster growth of damaged muscle tissue
Biologists have found that a protein that plays a key role in the lives of stem cells can bolster the growth of damaged muscle tissue, a step that could contribute to treatments for muscle degeneration caused by old age or muscular dystrophy.
Actuators inspired by muscle
To make robots more cooperative and have them perform tasks in close proximity to humans, they must be softer and safer.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Smooth muscle
The FASEB Smooth Muscle Conference is widely regarded as the premier forum in smooth muscle biology, and thus, attracts internationally recognized leaders in a number of fields.

Related Muscle Tissue Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".