Nav: Home

Now researchers can follow the hectic life inside a cell

March 14, 2016

Living cells are constantly on the move. They move around and divide, and they are responsible for transporting molecules around inside themselves. Now SDU researchers have developed a method that makes it possible to become a spectator at this hectic traffic. The method is of particular importance for disease research.

Every cell in our body is constantly active. Cells are inhabited by a myriad of different molecules tirelessly interacting with each other to keep the machinery - your body - going.

In the course of one minute, almost all molecules within a cell have moved around to perform various tasks in the cell.

- There is a lot of activity and a lot of traffic inside a cell. And that's actually one of science's great mysteries: How can these constant molecular transport processes be performed with such precision and coordination, researchers Achim Schroll and Daniel Wüstner from University of Southern Denmark ask.

Achim Schroll is a professor in applied mathematics, Department of Mathematics and Computer Science. Daniel Wüstner is an associate professor and principal investigator at the Department of Biochemistry and Molecular Biology.

Together with PhD student Christian V. Hansen from the Department of Mathematics and Computer Science, they have developed a new model that makes it possible to monitor the lively traffic inside a single cell. Their work is published in the journal Computing and Visualization in Science.

Wrong movement can be fatal

The model is important, because sometimes the molecular transport processes are not performed properly, which may cause diseases.

- The consequences can be fatal. Many diseases develop because the transport is disturbed or because proteins clump in the cell. This is the case in diseases like Alzheimer's, Parkinson's and Huntington's. Therefore it is important to study molecules activities in cells, says Daniel Wüstner.

The researchers started their work by studying living cells under a microscope and observe how factors such as temperature and biochemical reactions make molecules move inside a cell. These observations were "translated" into a mathematical model based on differential equations.

- Thus we now have a computer model that allows us to run a simulation of what goes on inside a living cell. We know the terms "in vivo" and "in vitro" (in a living organism and in the test tube) - here we examine things "in silico"; in the computer, explains Achim Scholl.

What exactly did the researchers do?

Molecules can be made to light up green, so you can see them in a microscope. They will appear as a green mass indicating that you that you are looking into a cell that is full of green molecules.

For more details the researchers installed an on/off-switch inside the cell. Each time a moving molecule passed through the switch, its green color got switched off. Gradually, more and more molecules in the cell became dark - a sign that more and more molecules had passed through the switch.

This traffic was "translated" into a mathematical model, so researchers can now use a computer to study the molecular traffic in a cell and see what happens if conditions change. One example could be that a membrane becomes harder for the molecules to penetrate, so it takes longer for them for them to reach the switch.

In real time, it takes approximately one minute for the majority of molecules to pass through the switch. After approximately 10 minutes all have passed through, and there are no more green lights to see.

Most molecules are quick to pass through, while certain conditions slow down the last ones. One reason is that some molecules are stronger bound to a particular structure. Another reason could be that they have to pass a barrier.
Paper: Computational modeling of fluorescence loss in photobleaching. Christian V. Hansen, Hans J. Schroll, Daniel Wüstner. Computing and Visualization in Science, Volume 17, Issue 4, pp 151-166.

Achim Schroll, Tel +45 65503553 and +45 24984090.
Daniel Wüstner, Tel +45 65502405 and +45 60112405.

University of Southern Denmark

Related Mathematics Articles:

More democracy through mathematics
For democratic elections to be fair, voting districts must have similar sizes.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Mathematics supports a new way to classify viruses based on structure
New research supports a structure-based classification system for viruses which could help in the identification and treatment of emerging viruses.
US educators awarded for exemplary teaching in mathematics
Janet Heine Barnett, Caren Diefenderfer, and Tevian Dray were named the 2017 Deborah and Franklin Tepper Haimo Award winners by the Mathematical Association of America (MAA) for their teaching effectiveness and influence beyond their institutions.
Authors of year's best books in mathematics honored
Prizes for the year's best books in mathematics were awarded to Ian Stewart and Tim Chartier by the Mathematical Association of America (MAA) on Jan.
The mathematics of coffee extraction: Searching for the ideal brew
Composed of over 1,800 chemical components, coffee is one of the most widely-consumed drinks in the world.
Even physicists are 'afraid' of mathematics
Physicists avoid highly mathematical work despite being trained in advanced mathematics, new research suggests.
Mathematics and music: New perspectives on the connections between these ancient arts
World-leading experts on music and mathematics present insights on the connections between these two ancient arts, especially as they relate to composition and performance, as well as creativity, education, and geometry.
Kindergarteners' mathematics success hinges on preschool skills
In a study funded by the National Science Foundation, researchers at the University of Missouri discovered that preschoolers who better process words associated with numbers and understand the quantities associated with these words are more likely to have success with math when they enter kindergarten.
First international mathematics research institute launched in Australia
World leaders in the mathematical sciences are visiting Melbourne for a series of research programs at Australia's first international research institute for mathematics and statistics.

Related Mathematics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".