Nav: Home

Researchers make old gut stem cells grow like young ones in a dish

March 14, 2017

Intestines experience a lot of wear and tear. Without the stalwart stem cells that live in our gut's lining, our ability to absorb food would dwindle and bacteria from the digestive tract would be able to breach the bloodstream. Unfortunately, the regenerative abilities of intestinal stem cells decline with age. However, it may be possible to partially reverse aging in gut stem cells, at least in a petri dish, researchers report in Cell Reports March 14.

"It looks like aging is not a one-way road, at least not for the intestine," says study co-author Hartmut Geiger of Cincinnati Children's Hospital.

Several chemical signals that are predominant in young intestinal stem cells were absent or downregulated in stem cells from older mice, but the researchers zeroed in on the Wnt protein. Wnt signals play a key role in directing stem cells during embryonic development, which led Geiger and colleagues to hypothesize that it might be helping to control stem cell growth and pluripotency in the gut later in life. Restoring Wnt signaling led to rejuvenation for intestinal stem cells from both mice and humans.

Aging in intestinal stem cells leads to changes in villi, the finger-shaped protuberances that line the small intestine and absorb nutrients, and crypts, the valleys between villi where the intestinal stem cells live. To assess the gut stem cells' villi-growing ability, the researchers chopped up samples from gut biopsies into tiny pieces.

"Only the pieces that have stem cells in them will reform part of this intestinal crypt structure when you put them in a petri dish," explains Geiger. "And then you can count how many crypts and villi are there and how complex they look." When the researchers added Wnt to petri dishes housing aged stem cells, those stem cells began growing crypts and villi in patterns resembling their younger counterparts.

When Geiger and his team compared biopsies of intestines from young mice (aged 2-3 months) to older mice (aged 20-22 months), they found that the older mice had fewer villi but that those villi were larger than those from young mice. "The overall architecture of the intestine is different upon aging, so you can clearly see aging-related changes intestinal architecture. That has not been reported in detail before," says Geiger.

It's still unclear what this change in gut architecture means for digestion and age-related gut health problems, but the changes likely affect intestines' ability to heal after wear and tear. Digesting each meal requires the gut to squeeze and stretch, which may damage some cells. And since the gut is also full of microbes, the intestinal lining cells are on the front lines, interacting with bacteria.

"Turnover in the gut is pretty fast. In 1-2 weeks, every cell is replaced by a new one. And why is that? Because it's a very aggressive environment in the intestine," says Geiger. "The turnover of aging stem cells is lower. So they do not make as quickly more differentiated cells as the young ones." Since intestinal stem cells are the only ones that can replace gut lining tissue, their aging affects the entire intestine.

However, the Wnt experiments suggest a promising direction for future research, says Geiger. Even though Wnt proteins are difficult to manipulate, their ability to reverse intestinal stem cell aging suggests a pathway that clinicians may eventually be able to target.
Work in the laboratory was supported by grants from the National Institutes of Health.

Cell Reports, Nalapareddy et al.: "Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells"

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...