Nav: Home

Buzzing the brain with electricity can boost working memory

March 14, 2017

Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronise brain waves.

Researchers at Imperial College London found that applying a low voltage current can bring different areas of the brain in sync with one another, enabling people to perform better on tasks involving working memory.

The hope is that the approach could one day be used to bypass damaged areas of the brain and relay signals in people with traumatic brain injury, stroke or epilepsy.

The brain is in constant state of chatter, with this activity seen as brainwaves oscillating at different frequencies and different regions keeping a steady 'beat'.

In a small study, published today in the journal eLife, the Imperial team found that applying a weak electrical current through the scalp helped to align different parts of the brain, synchronising their brain waves and enabling them to keep the same beat.

"What we observed is that people performed better when the two waves had the same rhythm and at the same time," said Dr Ines Ribeiro Violante, a neuroscientist in the Department of Medicine at Imperial, who led the research.

In the trial, carried out in collaboration with University College London, the team used a technique called transcranial alternating current stimulation (TACS) to manipulate the brain's regular rhythm.

They found that buzzing the brain with electricity could give a performance boost to the same memory processes used when people try to remember names at a party, telephone numbers, or even a short grocery list.

Dr Violante and team used TCAS to target two brain regions - the middle frontal gyrus and the inferior parietal lobule - which are known to be involved in working memory.

Ten volunteers were asked to carry out a set of memory tasks of increasing difficulty while receiving theta frequency stimulation to the two brain regions at slightly different times (unsynchronised), at the same time (synchronous), or only a quick burst (sham) to give the impression of receiving full treatment.

In the working memory experiments, participants looked at a screen on which numbers flashed up and had to remember if a number was the same as the previous, or in the case of the harder trial, if it the current number matched that of two-numbers previous.

Results showed that when the brain regions were stimulated in sync, reaction times on the memory tasks improved, especially on the harder of the tasks requiring volunteers to hold two strings of numbers in their minds.

"The classic behaviour is to do slower on the harder cognitive task, but people performed faster with synchronised stimulation and as fast as on the simpler task," said Dr Violante.

Previous studies have shown that brain stimulation with electromagnetic waves or electrical current can have an effect on brain activity, the field has remained controversial due to a lack of reproducibility.

But using functional MRI to image the brain enabled the team to show changes in activity occurring during stimulation, with the electrical current potentially modulating the flow of information.

"We can use TACS to manipulate the activity of key brain networks and we can see what's happening with fMRI," explained Dr Violante.

"The results show that when the stimulation was in sync, there was an increase in activity in those regions involved in the task. When it was out of sync the opposite effect was seen."

However, one of the major hurdles for making such a treatment widely available is the individual nature of people's brains. Not only do the electrodes have to get the right frequency, but target it to the right part of the brain and get the beat in time.

Dr Violante added: "We use a very cheap technique, and that's one of the advantages we hope it will bring if it's translatable to the clinic.

"The next step is to see if the brain stimulation works in patients with brain injury, in combination with brain imaging, where patients have lesions which impair long range communication in their brains.

"The hope is that it could eventually be used for these patients, or even those who have suffered a stroke or who have epilepsy."

Professor David Sharp, a neurologist in Imperial's Department of Medicine and senior author on the paper, added: "We are very excited about the potential of brain stimulation to treat patients. I work with patients who often have major problems with working memory after their head injuries, so it would be great to have a way to enhance our current treatments, which may not always work for them.

"Our next step is to try the approach out in our patients and we will see whether combining it with cognitive training can restore lost skills."
-end-


Imperial College London

Related Brain Injury Articles:

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.
Can brain injury from boxing, MMA be measured?
For boxers and mixed martial arts (MMA) fighters, is there a safe level of exposure to head trauma?
Study: Brain injury common in domestic violence
Domestic violence survivors commonly suffer repeated blows to the head and strangulation, trauma that has lasting effects that should be widely recognized by advocates, health care providers, law enforcement and others who are in a position to help, according to the authors of a new study.
Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Every cell has a story to tell in brain injury
Traumatic head injury can have widespread effects in the brain, but now scientists can look in real time at how head injury affects thousands of individual cells and genes simultaneously in mice.
Traumatic brain injury recovery via petri dish
Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish.
Traumatic brain injury may be associated with increased risk of suicide
An increased risk of suicide was associated with those residents of Denmark who sought medical attention for traumatic brain injury (TBI) compared with the general population without TBI in a study that used data from Danish national registers.
The brain is able to anticipate painful movements following injury
When people are injured, how does the brain adapt the body's movements to help avoid pain?
Cognitive training reduces depression, rebuilds injured brain structure & connectivity after traumatic brain injury
New research from the Center for BrainHealth at The University of Texas at Dallas shows that certain cognitive training exercises can help reduce depression and improve brain health in individuals years after they have suffered a traumatic brain injury (TBI).
More Brain Injury News and Brain Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.