Nav: Home

Portable 3-D ultrasound will enable fieldside, roadside screening of head injury

March 14, 2017

AUGUSTA, Ga. (March 14, 2017) - The thin, flexible sheath that protects and insulates our optic nerve is also a window into whether we've had a head injury.

Now researchers are developing a portable, painless 3-D ultrasound device that can peer into that window in the field, providing instantaneous evidence of dangerous swelling that can do permanent brain damage.

"The pressure around the eye is directly proportional to the pressure around the brain. If somebody gets a hit to the head on a football field, I can scan them right there," said Dr. Matthew L. Lyon, vice chairman of academic and research programs in the Department of Emergency Medicine and Hospitalist Services at the Medical College of Georgia at Augusta University. "I can compare what their baseline looks like to what the sheath looks like now and see whether they had a head injury and need further evaluation or if it's Ok to go back in the game."

The immediate response of the usually uniform, cylindrical sheath and the fact that you can see it by looking into the eye make it an easily accessible diagnostic and even prognostic tool, and the 3-D perspective can help detect even subtle changes that signal increased pressure inside the closed confines of the skull, said Dr. Robert W. Gibson, medical anthropologist and director of research for the MCG Department of Emergency Medicine.

"It is a place in the system that is very responsive to increases in pressures and it's a place we can readily see," added Gibson. "The more the sheath is bulged or rippled, the more you have a sense of the nature of the damage."

Augusta University has patented the concept of using portable 3-D ultrasound to rapidly gauge whether there has been a brain injury. Now the researchers are working with URSUS Medical LLC, a Pennsylvania-based biotech company with expertise in ultrasound, to build one. A one-year $350,000 Small Business Innovation Research grant from the National Institutes of Health is funding the project to build a device that can readily add another dimension to existing 2-D transducers. They hope to have a prototype in hand within a few months then begin tests to ensure it reliably produces an accurate, useful image, first on realistic, pliable optic nerve sheath models and later on cadavers. Longer-term goals include testing the device on living humans, comparing images to those obtained with bulkier and more-costly MRI and CT technology, as well as building a 3-D transducer from scratch. Later they want to explore numerous other potential uses from screening breast masses to skin lesions.

Our clear cerebral spinal fluid circulates in a closed system that includes the brain and spinal cord, bathing and cushioning these delicate parts. But when swelling occurs in response to a head injury, the resulting high pressure can become destructive.

Both bone and distance are a deterrent to ultrasound waves, so while they can't look directly at the brain, the MCG researchers want a quick way to look at the next best thing: the optic nerve, an extension of the brain.

Like the unbelievable images 3-D ultrasound provides of developing babies, a 3-D take on the optic nerve sheath could provide real time potentially diagnostic images. "You can do it at the bedside, you just can't currently do it fieldside," Lyon said of the optic nerve visuals. Rather, current transducers and processing equipment used to provide this sort of detail is expensive, not readily portable and not designed to be aimed at the eye, Gibson said.

But the inertial measurement unit, or IMU, technology, used in drones, guided missiles and iPhones, can add a third dimension to portable 2-D technology by adding an accelerometer to gauge motion and a gyrometer to gauge position, the researchers said. Much like an image can right itself as you move your cell phone from a horizontal to vertical position and vice versa, IMU technology can put images taken from all sorts of angles together to form a true 3-D angle.

Like the fine details of a baby face, they have good evidence the enhanced imagery can even detect mild to moderate injuries. "You can see the bubbles and where they are and map them and see subtle changes," Lyon said. "It takes two seconds."

The body has natural mechanisms to try and maintain a constant, healthy pressure on the brain in the closed and rigid confines of the skull, Gibson said. But head trauma and resulting swelling to the brain from a car accident or a collision on a sports field can send pressures rapidly upward. The rapid increase can equally quickly overreach the body's ability to compensate. Essentially immediately, one result is the increased fluid volume in the flexible sheath around the optic nerve, part of the closed system for circulating cerebral spinal fluid.

Even long after the fact, lumps and other distortions of the previously smooth, thin and cylindrical sheath are a footprint of previous high pressures and damage, Lyon said. The sheath just seems very responsive -- sometimes permanently so -- to increased intracranial pressure.

"It's well known that if somebody comes into the emergency room unconscious and we want to know if they have elevated intracranial pressure, we can measure the width of that sheath and if it's above five millimeters, that is abnormal," Lyon said. MCG researchers also have documented oddly shaped sheaths in trauma patients with known head injuries. Like bad stretch pants, the sheaths also seem more prone to stretch once they've been stretched: The MCG researchers documented last summer increased sheath dilation in response to the Valsalva maneuver -- holding your nose, closing your mouth and trying to exhale - that is used to equalize pressure in the ears.
-end-
Lyon, a 1999 MCG graduate, is also director of the Center for Ultrasound Education at AU. The eye disease glaucoma also can put unhealthy pressure on the optic nerve.

CONTACT: Toni Baker, 706-721-4421 Office, 706-825-6473 Cell, tbaker@augusta.edu

Medical College of Georgia at Augusta University

Related Ultrasound Articles:

World's first ultrasound biosensor created in Australia
Most implantable monitors for drug levels and biomarkers invented so far rely on high tech and expensive detectors such as CT scans or MRI.
Ultrasound can make stronger 3D-printed alloys
A study just published in Nature Communications shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.
Full noncontact laser ultrasound: First human data
Conventional ultrasonography requires contact with the patient's skin with the ultrasound probe for imaging, which causes image variability due to inconsistent probe contact pressure and orientation.
Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.
Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.
Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.
Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.
Ultrasound-firewall for mobile phones
Mobile phones and tablets through so-called audio tracking, can be used by means of ultrasound to unnoticeably track the behaviour of their users: for example, viewing certain videos or staying in specific rooms and places.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Atomic structure of ultrasound material not what anyone expected
Lead magnesium niobate (PMN) is a prototypical
More Ultrasound News and Ultrasound Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.