Nav: Home

NIH scientists deploy CRISPR to preserve photoreceptors in mice

March 14, 2017

Silencing a gene called Nrl in mice prevents the loss of cells from degenerative diseases of the retina, according to a new study. The findings could lead to novel therapies for preventing vision loss from human diseases such as retinitis pigmentosa. The study was conducted by researchers at the National Eye Institute (NEI), part of the National Institutes of Health, and was published online today in Nature Communications.

The tissue in the back of the eye called the retina contains two types of cells that convert light into electrical signals sent to the brain. Rod photoreceptors enable vision in dim light, while cone photoreceptors enable color vision and the ability to see in well-lit conditions. Genetic mutations affect mostly rods, leading to night blindness such as that seen with retinitis pigmentosa. However, because rods also provide vital structural and nutritional support to cones, rod dysfunction or death can lead to cone degeneration and blindness.

In a series of studies, Anand Swaroop, Ph.D., chief of NEI's Neurodegeneration and Repair Laboratory, and his team asked if saving rods could prevent the loss of cones, thus preserving daylight and color vision.

During development, Nrl determines whether a photoreceptor precursor cell becomes a rod or a cone. In previous studies, Swaroop and colleagues showed that mice engineered to lack the Nrl gene develop cone-only retinas. Other researchers showed that if Nrl expression is knocked out in rods of mature mice, the cells gain cone-like features and survive despite rod gene mutations.

"The evidence suggested to us that coaxing rods into becoming more cone-like by knocking out Nrl was a potential strategy for overriding mutations that would otherwise lead to rod degeneration," said Swaroop. "Consequently, the neighboring cones would remain functional and viable."

To test the strategy, the researchers used a new genome editing technology called CRISPR, which stands for clustered regularly interspaced short palindromic repeats. CRISPR is like a molecular pair of scissors that can be programmed to snip a specific DNA sequence with precision.

NEI postdoctoral research fellow and the study's first author, Wenhan Yu, Ph.D., developed a method for applying CRISPR in photoreceptors. His strategy uses an adeno-associated virus (AAV) as a carrier, or vector, to introduce CRISPR into retinal cells. Yu tested this genome editing tool to remove the Nrl gene in wild-type mice and three different mouse models of retinal degeneration. By measuring gene expression and examining the retinal cells, the researchers confirmed that rods became more cone-like, as predicted. Although these cone-like rods could not detect light, they survived and improved survival of their neighboring cones.

In all three mouse models, rod degeneration was prevented or slowed, although less benefit was achieved when the therapy was introduced in older animals. Importantly, the benefit was evident in all three models, regardless of the specific gene defect in the mouse.

"Unlike conventional gene therapy, in which a normal gene is introduced to replace the defective gene, this approach could treat retinal degeneration caused by a variety of mutant genes," explained Zhijian Wu, Ph.D., head of the NEI Ocular Gene Therapy Core and senior author of the study.

More research is needed before the therapy is ready for testing in a clinical trial. The safety of CRISPR has yet to be established and information is needed about its possible adverse effects. Nevertheless, these findings provide proof of concept for CRISPR-based therapies for degenerative retinal diseases.
-end-
The study was supported by the Intramural Research Program at NEI.

Reference:

Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijiannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z. 2017. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nature Communications

NEI leads the federal government's research on the visual system and eye diseases. NEI supports basic and clinical science programs to develop sight-saving treatments and address special needs of people with vision loss. For more information, visit https://www.nei.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

NIH/National Eye Institute

Related Retinitis Pigmentosa Articles:

Gene mutation linked to retinitis pigmentosa in Southwestern US Hispanic families
Thirty-six percent of Hispanic families in the U.S. with a common form of retinitis pigmentosa got the disease because they carry a mutation of the arrestin-1 gene, according to a new study from researchers at The University of Texas Health Science Center at Houston (UTHealth) School of Public Health.
Using CRISPR to reverse retinitis pigmentosa and restore visual function
Using the gene-editing tool CRISPR/Cas9, researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health, with colleagues in China, have reprogrammed mutated rod photoreceptors to become functioning cone photoreceptors, reversing cellular degeneration and restoring visual function in two mouse models of retinitis pigmentosa.
Volker Busskamp receives prize for application-oriented neurobiological research
The young researcher has been awarded for his contribution to a gene therapy approach to treat retinitis pigmentosa and for the development of artificial neuronal circuits.
Improving the view on the genetic causes of retinitis pigmentosa
Scientists have discovered that mutations in REEP6 -- a gene that until now had not been associated with a human disease -- can explain some of the cases of retinitis pigmentosa that lacked a genetic diagnosis.
Retinitis pigmentosa may be treated by reprogramming sugar metabolism
Columbia University researchers slowed vision loss in mice with a form of retinitis pigmentosa by reprogramming the metabolism of photoreceptors in the retina.
After blindness, the adult brain can learn to see again
More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration.
Visual pigment rhodopsin forms two-molecule complexes in vivo
Researchers at Baylor College of Medicine, the University of Utah and the Johns Hopkins University School of Medicine have determined for the first time the most likely configuration of rhodopsin in a living organism, and hope this discovery will help develop future therapies for retinitis pigmentosa, a degenerative eye disease for which there is no known cure.
CRISPR used to repair blindness-causing genetic defect in patient-derived stem cells
Scientists have used a new gene-editing technology called CRISPR, to repair a genetic mutation responsible for retinitis pigmentosa (RP), an inherited condition that causes the retina to degrade and leads to blindness in at least 1.5 million cases worldwide.
Gene editing technique improves vision in rats with inherited blindness
A new technique that has the potential to treat inherited diseases by removing genetic defects has been shown for the first time to hinder retinal degeneration in rats with a type of inherited blindness, according to a Cedars-Sinai study.
USC researchers discover way to improve image sharpness for blind people with retinal implants
Retinal implants that deliver longer impulses may markedly improve image sharpness for blind individuals.

Related Retinitis Pigmentosa Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".