Nav: Home

Zebrafish without stripes

March 14, 2017

Dowling-Degos disease is a hereditary pigmentation disorder that generally progresses harmlessly. However, some of those affected also develop severe skin inflammation. An international team of researchers under the leadership of the University of Bonn has now found a cause for this link. Their knowledge comes thanks to an animal that is known among aquarium owners for its characteristic pigmentation: the zebrafish. The results have now been published in the Journal of Clinical Investigation.

People with Dowling-Degos disease have a noticeably large number of dark pigment spots. These are frequently found in certain areas of the body, such as the face, neck, torso, hands, and the bending folds of the arms and legs. The pigmentation disorder generally progresses harmlessly; however, it can have a negative aesthetic effect.

Occasionally, those affected also develop extremely unpleasant skin inflammation, called acne inversa. This is not only painful but is also associated with festering blisters that can leave scars when they burst. The colonization of microorganisms on the affected areas of skin also creates unpleasant body odor. Acne inversa has a chronic progression; a permanent solution is only provided by surgery.

"We have genetically examined 90 people with Dowling-Degos disease since 2005," explains Prof. Regina Betz from the Institute of Human Genetics at the University Hospital of Bonn. "Six of them also suffered from acne inversa." The scientists found a special characteristic in this subgroup: the patients displayed mutations in what is known as the PSENEN gene.

It has been known that PSENEN mutations can cause acne inversa. "However, we were able to show for the first time that changes in this gene primarily cause Dowling-Degos disease and around half of the mutation carriers develop acne inversa," emphasizes Damian Ralser, who is currently working on his doctorate at the Institute of Human Genetics.

To do this, the scientists used an animal that should be known to many aquarium enthusiasts due to its striking pigmentation: the zebrafish. However, the characteristic blueish black stripes, which give the fish its name, only form over time. The eyelash-sized zebrafish larvae are more or less transparent.

Fish as a model organism

Many processes in the body can thus be observed easily under an optical microscope. For this reason, the zebrafish is now used as a model organism by scientists around the globe. At the University of Bonn, Prof. Benjamin Odermatt from the Anatomical Institute is researching how zebrafish repair defective nerve tissue.

Zebrafish also have the PSENEN gene. "In order to be able to research more closely what effect PSENEN has, we, in collaboration with Prof. Odermatt, deactivated the gene in some zebrafish larvae and then compared these with normal larvae under the microscope," explains Damian Ralser.

The pigment cells -- the melanocytes -- usually wander in a certain direction in the zebrafish larvae. This ensures that the characteristic striped pattern develops over time. However, the pigment cells wandered back and forth aimlessly in animals in which the functioning of PSENEN was disrupted. They ultimately collected in unusual places to form clearly visible patches -- similar to people with Dowling-Degos disease.

Only a small proportion of all Dowling-Degos patients carry a PSENEN mutation. "There are also other disease genes that lead to the pigmentation disorder," says Betz. She recommend that all those affected undergo testing. If a disrupted PSENEN gene is the actual cause, there is a significantly increased risk of also suffering from acne inversa. However, the scientist emphasizes that no one is exposed to this risk without protection: "This severe form of acne develops in particular in PSENEN mutation carriers who smoke a lot or who are overweight."
-end-
Publication: Damian Ralser et al.: Mutations in gamma-secretase subunit-encoding PSENEN underlie Dowling-Degos disease associated with acne inversa; Journal of Clinical Investigation; DOI: 10.1172/JCI90667

Contact:

Prof. Regina Betz
Institute of Human Genetics
University of Bonn
Tel. +49 (0)228/28751023
E-mail: regina.betz@uni-bonn.de

Prof. Benjamin Odermatt
Anatomical Institute
University of Bonn
Tel. +49 (0)228/739021
E-mail: b.odermatt@uni-bonn.de

University of Bonn

Related Zebrafish Articles:

How do zebrafish get their stripes? New data analysis tool could provide an answer
A new mathematical tool developed at Brown could help scientists better understand how zebrafish get their stripes as well as other self-assembled patterns in nature.
Zebrafish teach researchers more about atrial fibrillation
Genetic research in zebrafish at the University of Copenhagen has surprised the researchers behind the study.
How decisions unfold in a zebrafish brain
Researchers were able to track the activity of each neuron in the entire brain of zebrafish larvae and reconstruct the unfolding of neuronal events as the animals repeatedly made 'left or right' choices in a behavioral experiment.
'Census' in the zebrafish's brain
Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a 'census' in their brains.
Zebrafish 'avatars' can help decide who should receive radiotherapy treatment
To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients.
Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.
Survival of the zebrafish: Mate, or flee?
*Researchers have found that when making decisions that are important to the species' survival, zebrafish choose to mate rather than to flee from a threat.
Zebrafish capture a 'window' on the cancer process
Cancer-related inflammation impacts significantly on cancer development and progression. New research has observed in zebrafish, for the first time, that inflammatory cells use weak spots or micro-perforations in the extracellular matrix barrier layer to access skin cancer cells.
How a zebrafish could help solve the mysteries of genetic brain disease
A close look at the rapidly developing zebrafish embryo is helping neuroscientists better understand the potential underpinnings of brain disorders, including autism and schizophrenia.
Zebrafish help unlock mystery of motor neurone disease
Scientists from the University of Sheffield have successfully created zebrafish that carry the complex genetic change known to cause the most common genetic form of motor neurone disease (MND).
More Zebrafish News and Zebrafish Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.