Sonic cyber attack shows security holes in ubiquitous sensors

March 14, 2017

ANN ARBOR -- Sound waves could be used to hack into critical sensors in a broad array of technologies including smartphones, automobiles, medical devices and the Internet of Things, University of Michigan research shows.

The new work calls into question the longstanding computer science tenet that software can automatically trust hardware sensors, which feed autonomous systems with fundamental data they need to make decisions.

The inertial sensors involved in this research are known as capacitive MEMS accelerometers. They measure the rate of change in an object's speed in three dimensions.

It turns out they can be tricked. Led by Kevin Fu, U-M associate professor of computer science and engineering, the team used precisely tuned acoustic tones to deceive 15 different models of accelerometers into registering movement that never occurred. The approach served as a backdoor into the devices--enabling the researchers to control other aspects of the system.

"The fundamental physics of the hardware allowed us to trick sensors into delivering a false reality to the microprocessor," Fu said. "Our findings upend widely held assumptions about the security of the underlying hardware.

"If you look through the lens of computer science, you won't see this security problem. If you look through the lens of materials science, you won't see this security problem. Only when looking through both lenses at the same time can one see these vulnerabilities."

The researchers performed several proof-of-concept demonstrations: They used a $5 speaker to inject thousands of fictitious steps into a Fitbit. They played a malicious music file from a smartphone's own speaker to control the phone's accelerometer trusted by an Android app to pilot a toy remote control car. They used a different malicious music file to cause a Samsung Galaxy S5's accelerometer to spell out the word "WALNUT" in a graph of its readings.

All accelerometers have an analog core--a mass suspended on springs. When the object the accelerometer is embedded in changes speed or direction, the mass moves accordingly. The digital components in the accelerometer process the signal and ferry it to other circuits.

"Analog is the new digital when it comes to cybersecurity," Fu said. "Thousands of everyday devices already contain tiny MEMS accelerometers. Tomorrow's devices will aggressively rely on sensors to make automated decisions with kinetic consequences."

Autonomous systems like package delivery drones and self-driving cars, for example, base their decisions on what their sensors tell them, said Timothy Trippel, a doctoral student in computer science and engineering and first author of a new paper on the findings.

"Humans have sensors, like eyes, ears and a nose. We trust our senses and we use them to make decisions," Trippel said. "If autonomous systems can't trust their senses, then the security and reliability of those systems will fail."

The trick Trippel and Fu introduced exploits the same phenomenon behind the legend of the opera singer breaking a wine glass. Key to that process is hitting the right note--the glass' resonant frequency.

The researchers identified the resonant frequencies of 20 different accelerometers from five different manufacturers. Then instead of shattering the chips, they tricked them into decoding sounds as false sensor readings that they then delivered to the microprocessor.

Trippel noticed additional vulnerabilities in these systems as the analog signal was digitally processed. Digital "low pass filters" that screen out the highest frequencies, as well as amplifiers, haven't been designed with security in mind, he said. In some cases, they inadvertently cleaned up the sound signal in a way that made it easier for the team to control the system.

The researchers recommend ways to adjust hardware design to eliminate the problems. They also developed two low-cost software defenses that could minimize the vulnerabilities, and they've alerted manufacturers to these issues.

The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.
-end-
The researchers will present a paper on the work April 26 in Paris at the IEEE European Symposium on Security and Privacy. The paper is titled "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks." The research was supported by the National Science Foundation.

University of Michigan

Related Sound Waves Articles from Brightsurf:

Sound waves power new advances in drug delivery and smart materials
Sound waves have been part of science and medicine for decades, but the technologies have always relied on low frequencies.

Scientists make sound-waves from a quantum vacuum at the Black Hole laboratory
Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behaviour of black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

Even if you want to, you can't ignore how people look or sound
Your perceptions of someone you just met are influenced in part by what they look like and how they sound.

Scientists achieve major breakthrough in preserving integrity of sound waves
In a breakthrough experiment, physicist and engineers at the CUNY ASRC have shown that it is possible to limit the movement of sound to a single direction without interruption even when there are deformations along the pathway.

Shaking light with sound
Combining integrated photonics and MEMS technology, scientists from EPFL and Purdue University demonstrate monolithic piezoelectric control of integrated optical frequency combs with bulk acoustic waves.

Sound waves transport droplets for rewritable lab-on-a-chip devices
Engineers at Duke University have demonstrated a versatile microfluidic lab-on-a-chip that uses sound waves to create tunnels in oil to digitally manipulate and transport droplets.

A sound treatment
University of Utah biomedical engineering assistant professor Jan Kubanek has discovered that sound waves of high frequency (ultrasound) can be emitted into a patient's brain to alter his or her state.

Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.

Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.

Read More: Sound Waves News and Sound Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.