Nav: Home

Researchers identify how inflammation spreads through the brain after injury

March 14, 2017

Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury. This mechanism may explain the widespread and long-lasting inflammation that occurs after traumatic brain injury, and may play a role in other neurodegenerative diseases.

The findings were published today in a study in the Journal of Neuroinflammation.

This new understanding has the potential to transform how brain inflammation is understood, and, ultimately, how it is treated. The researchers showed that microparticles derived from brain inflammatory cells are markedly increased in both the brain and the blood following experimental traumatic brain injury (TBI). These microparticles carry pro-inflammatory factors that can activate normal immune cells, making them potentially toxic to brain neurons. Injecting such microparticles into the brains of uninjured animals creates progressive inflammation at both the injection site and eventually in more distant sites.

Research has found that neuroinflammation often goes on for years after TBI, causing chronic brain damage. The researchers say that the microparticles may play a key role in this process.

Chronic inflammation has been increasingly implicated in the progressive cell loss and neurological changes that occur after TBI. These inflammatory microparticles may be a key mechanism for chronic, progressive brain inflammation and may represent a new target for treating brain injury.

The researchers on the paper include four University of Maryland School of Medicine researchers: Alan Faden, Stephen R. Thom, Bogdan A. Stoica, and David Loane.

"These results potentially provide a new conceptual framework for understanding brain inflammation and its relationship to brain cell loss and neurological deficits after head injury, and may be relevant for other neurodegenerative disorders such as Alzheimer disease in which neuroinflammation may also play a role," said Dr. Faden. "The idea that brain inflammation can trigger more inflammation at a distance through the release of microparticles may offer novel treatment targets for a number of important brain diseases."

The researchers studied mice, and found that in animals who had a traumatic brain injury, levels of microparticles in the blood were much higher. Because each kind of cell in the body has a distinct fingerprint, the researchers could track exactly where the microparticles came from. The microparticles they looked at in this study are released from cells known as microglia, immune cells that are common in the brain. After an injury, these cells often go into overdrive in an attempt to fix the injury. But this outsized response can change protective inflammatory responses to chronic destructive ones.

The findings have important potential clinical implications. The researchers say that microparticles in the blood have the potential to be used as a biomarker - a way to determine how serious a brain injury may be. This could help guide treatment of the injuries, whose severity is often difficult to gauge.

They also found that exposing the inflammatory microparticles to a compound called PEG-TB could neutralize them. This opens up the possibility of using that compound or others to treat TBI, and perhaps even other neurodegenerative diseases.
-end-


University of Maryland School of Medicine

Related Traumatic Brain Injury Articles:

New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Studies uncover long-term effects of traumatic brain injury
Doctors are beginning to get answers to the question that every parent whose child has had a traumatic brain injury wants to know: What will my child be like 10 years from now?
People with traumatic brain injury approximately 2.5 times more likely to be incarcerated
People who have suffered a traumatic brain injury are approximately 2.5 times more likely to be incarcerated in a federal correctional facility in Canada than people who have not, a new study has found.
Traumatic brain injury associated with long-term psychosocial outcomes
Traumatic brain injury (TBI) during youth is associated with elevated risks of impaired adult functioning, according to a longitudinal study published in PLOS Medicine.
Curbing the life-long effects of traumatic brain injury
A fall down the stairs, a car crash, a sports injury or an explosive blast can all cause traumatic brain injury (TBI).
Is traumatic brain injury associated with late-life neurodegenerative conditions?
Traumatic brain injury (TBI) with loss of consciousness was not associated with late-life mild cognitive impairment, Alzheimer disease or dementia but it appeared to be associated with increased risk for other neurodegenerative and neuropathologic findings, according to a new article published online by JAMA Neurology.
Link found between traumatic brain injury and Parkinson's, but not Alzheimer's
Traumatic brain injury (TBI) with a loss of consciousness (LOC) may be associated with later development of Parkinson's disease but not Alzheimer's disease or incident dementia.
Novel peptide protects cognitive function after mild traumatic brain injury
Scientists at the Hebrew University of Jerusalem have shown that a single dose of a new molecule can protect the brain from inflammation and cognitive impairments following mild traumatic brain injury.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.
Developing tools to screen traumatic brain injury therapies
University of Houston biologist Amy Sater will be developing a model for studying traumatic brain injury, thanks to a two-year, $386,000 grant from the Robert J.

Related Traumatic Brain Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"