Exploration of a new chemical synthesis process -- synergy of two catalysts in one flask

March 14, 2018

[Background]

Most medications, agricultural chemicals and functional materials, indispensable for maintaining and improving our lives, are composed of organic molecules. Organic synthesis using a catalyst is the method for the rapid and large scale supply of such organic molecules without imposing a heavy burden on the environment. In this research field, Prof. Noyori in 2001 and Profs. Suzuki and Negishi in 2010 were awarded the Nobel Prize in Chemistry; Prof. Noyori, for "chirally catalyzed hydrogenation reactions," and Profs. Suzuki and Negishi, for "palladium-catalyzed cross-couplings."

In recent years, catalysts consisting of only organic molecules but without metal elements, i.e. organocatalysts, have been regarded to be next-generation catalysts, and have received much attention. However, some organic chemistry reactions cannot take place with a single catalyst. Many investigations have therefore been carried out on using two or more catalysts in a synergistic manner for organic synthesis, creating a new category in this research field. In the human body, for example, several catalysts (enzymes) work in a synergistic manner for synthesizing complex organic molecules that exert important functions. Likewise, organic synthesis could potentially be carried out by two or more catalysts in one flask. Nonetheless, it has been thought to be a difficult task to realize such catalytic systems because catalysts themselves react with each other in many cases to abolish their catalytic ability.

[Results]

The research team of Kanazawa University successfully synthesized a ketone from an aldehyde and a benzyl, or from an aldehyde and an allylic carbonate, by the synergistic action of an organocatalyst and a palladium catalyst in one flask (Figure 1). Thorough examination of the reaction conditions revealed the importance of thiazolium N-heterocyclic carbene as the organocatalyst and palladium with augmented activity by bisphosphine, an organic phosphorus compound, as the metal catalyst (Figure 2). It should be mentioned that no catalytic reactions were found to take place in the absence of either of the two catalysts, indicating that two catalysts are indispensable for such a reaction to take place.

Synthetic conversion of an aldehyde into a ketone by conventional methods required a complicated process with multiple chemical reaction steps or a metal reagent that would impose a substantial burden on the environment. The newly developed protocol, on the other hand, enables the synthesis of a ketone of complex chemical structure from an aldehyde under simple and mild conditions (Figure 3). The key to success is that the aldehyde, which is known to act as an electrophile in chemical reactions, in fact worked here as a nucleophile. Thus, the novel protocol enables the rapid and simple synthetic conversion of an aldehyde into a ketone, which is an important basic structure found in a variety of medications and medication candidate chemicals.

[Future prospects]

It was thought to be difficult for a transition metal catalyst and an organocatalyst to function in a synergistic manner in one flask with their individual functional activities maintained. The present study represents a milestone in this field. Furthermore, a novel design guideline has now been established in the field of "organic synthesis using catalysts." It is expected that, by changing the combination of catalysts to be employed, a variety of synthetic reactions that have so far been difficult could be developed, which should pave the way for new technologies for synthesizing medications and medication candidates in a simple and easy manner but without waste.
-end-


Kanazawa University

Related Organic Molecules Articles from Brightsurf:

Metal-organic frameworks become flexible
Materials consisting of inorganic and organic components can combine the best of two worlds: under certain circumstances, the so-called MOFs - short for metal-organic frameworks - are structured in the same order as crystals and are at the same time porous and deformable.

Printing organic transistors
Researchers successfully print and demonstrate organic transistors, electronic switches, which can operate close to their theoretical speed limits.

Energy harvesting goes organic, gets more flexible
The race is on to create natural biocompatible piezoelectric materials for energy harvesting, electronic sensing, and stimulating nerves.

A new kind of liquid scintillator via hybridizing perovskite nanocrystals with organic molecules
Highly-efficient scintillators are playing an essential role in various fundamental science and industrial applications.

Study pinpoints process that might have led to first organic molecules
New research led by the American Museum of Natural History and funded by NASA identifies a process that might have been key in producing the first organic molecules on Earth about 4 billion years ago, before the origin of life.

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint
How did organic matter reach the Earth in the first place?

4-billion-year-old nitrogen-containing organic molecules discovered in Martian meteorites
Scientists exploring Mars and analysing Martian meteorite samples have found organic compounds essential for life: nitrogen-bearing organics in a 4-billion-year-old Martian meteorite.

Study: Organic molecules discovered by Curiosity Rover consistent with early life on Mars
Organic compounds called thiophenes are found on Earth in coal, crude oil and oddly enough, in white truffles, the mushroom beloved by epicureans and wild pigs.

Let there be light: Synthesizing organic compounds
The appeal of developing improved drugs to promote helpful reactions or prevent harmful ones has driven organic chemists to better understand how to synthetically create these molecules and reactions in the laboratory.

Metal-organic framework nanoribbons
The nanostructure of metal-organic frameworks (MOFs) plays an important role in various applications since different nanostructures usually exhibit different properties and functions.

Read More: Organic Molecules News and Organic Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.