Boron can form a purely honeycomb, graphene-like 2-D structure

March 14, 2018

Seeking for low-dimensional boron allotropes has attracted considerable interest in the past decades and tremendous theoretical works predict the existence of monolayer boron. As boron has only three valence electrons, the electron deficiency makes a honeycomb lattice of boron energetically unstable. Instead, a triangular lattice with periodic holes was predicted to be more stable. In 2015, Prof. Wu has led a research team at Institute of Physics, Chinese Academy of Sciences, and successfully synthesized 2D borophene sheet on silver surface, which is exhibiting the predicted triangular lattice with different arrangements of hexagonal holes.

An intriguing question is whether it is possible to prepare a borophene monolayer with a pure honeycomb lattice. Honeycomb borophene will naturally host Dirac fermions and thus intriguing electronic properties resembling other group IV elemental 2D materials. Additionally, a honeycomb 2D boron lattice may enable the superconductivity behavior. Since in the well-known high Tc superconductor, MgB2, the crystal structure consists of boron planes with intercalated Mg layers, where the boron plane has a pure honeycomb structure like graphene. It is remarkable that in MgB2, superconductivity occurs in the boron planes, while the Mg atoms serves as electron donors.

Recently, the research team led by Prof. Wu reported the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1 1 1) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum. Scanning tunneling microscopy (STM) images reveal perfect monolayer borophene with planar, non-buckled honeycomb lattice similar as graphene. Theoretical calculations show that the honeycomb borophene on Al(1 1 1) is energetically stable. Remarkably, nearly one electron charge is transferred to each boron atom from the Al(1 1 1) substrate and stabilizes the honeycomb borophene structure. This work vividly demonstrated that one can manipulate the borophene lattice by controlling the charge transfer between the substrate and the borophene. And the honeycomb borophene provides attractive possibility to construct boron-based atomic layers with unique electronic properties such as Dirac states, as well as to control superconductivity in boron-based compounds.
-end-
This work was supported by the National Key Research and Development Program (2016YFA0300904 and 2016YFA0202301), the National Natural Science Foundation of China (11334011, 11674366 and 11674368), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB07010200 and XDPB06).

See the article:

Wenbin Li, Longjuan Kong, Caiyun Chen, Jian Gou, Shaoxiang Sheng, Weifeng Zhang, Hui Li, Lan Chen, Peng Cheng, Kehui Wu, Experimental Realization of Honeycomb Borophene, Science Bulletin, 2018, Vol.63, No. 5: 282-286 https://www.sciencedirect.com/science/article/pii/S2095927318300707

Science China Press

Related Boron Articles from Brightsurf:

Smart fluorescent molecular switches based on boron-based compounds
Scientists have developed extremely stable molecular switches of high luminosity that self-assemble into 1D nanostructures and form gel-like materials.

Boron nitride nanofilms for protection from bacterial and fungal infections
NUST MISIS material scientists have presented antibacterial nano-coatings based on boron nitride, which are highly effective against microbial pathogens (up to 99.99%).

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

Boron nitride destroys PFAS 'forever' chemicals PFOA, GenX
Rice University chemical engineers have discovered a photocatalyst that can destroy 99% of the 'forever' chemical PFOA in laboratory tests on polluted water.

Researchers discover new boron-lanthanide nanostructure
A newly discovered nanocluster has a geometry that ''has not been observed in chemistry heretofore,'' the researchers say.

New study unveils ultrathin boron nitride films for next-generation electronics
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has unveiled a novel material that could enable major leaps in the miniaturization of electronic devices.

Oriented hexagonal boron nitride foster new type of information carrier
Present computers use the presence or absence of charge (0s and 1s) to encode information, where the physical motion of charges consume energy and causes heat.

Spin-dependent processes in the 2D material hexagonal boron nitride
Quantum technology was once considered to be something very expensive and available only to the largest research centers.

Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications
A research group led by Hiroyuki Muramatsu of Shinshu University succeeded in selectively doping the outer tube of DWNTs with boron.

High-quality boron nitride grown at atmospheric pressure
Graphene Flagship researchers reported a significant step forward in growing monoisotopic hexagonal boron nitride at atmospheric pressure for the production of large and very high-quality crystals.

Read More: Boron News and Boron Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.