Chemists use abundant, low-cost and non-toxic elements to synthesize semiconductors

March 14, 2018

AMES, Iowa - One of the problems for Javier Vela and the chemists in his Iowa State University research group was that a toxic material worked so well in solar cells.

And so any substitute for the lead-containing perovskites used in some solar cells would have to really perform. But what could they find to replace the perovskite semiconductors that have been so promising and so efficient at converting sunlight into electricity?

What materials could produce semiconductors that worked just as well, but were safe and abundant and inexpensive to manufacture?

"Semiconductors are everywhere, right?" Vela said. "They're in our computers and our cell phones. They're usually in high-end, high-value products. While semiconductors may not contain rare materials, many are toxic or very expensive."

Vela, an Iowa State associate professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, directs a lab that specializes in developing new, nanostructured materials. While thinking about the problem of lead in solar cells, he found a conference presentation by Massachusetts Institute of Technology researchers that suggested possible substitutes for perovskites in semiconductors.

Vela and Iowa State graduate students Bryan Rosales and Miles White decided to focus on sodium-based alternatives and started an 18-month search for a new kind of semiconductor. The work was supported by Vela's five-year, $786,017 CAREER grant from the National Science Foundation. CAREER grants are the foundation's most prestigious awards for early career faculty.

They came up with a compound that features sodium, which is cheap and abundant; bismuth, which is relatively scarce but is overproduced during the mining of other metals and is cheap; and sulfur, the fifth most common element on Earth. The researchers report their discovery in a paper recently published online by the Journal of the American Chemical Society.

The paper's subtitle is a good summary of their work: "Toward Earth-Abundant, Biocompatible Semiconductors."

"Our synthesis unlocks a new class of low-cost and environmentally friendly ternary (three-part) semiconductors that show properties of interest for applications in energy conversion," the chemists wrote in their paper.

In fact, Rosales is working to create solar cells that use the new semiconducting material.

Vela said variations in synthesis - changing reaction temperature and time, choice of metal ion precursors, adding certain ligands - allows the chemists to control the material's structure and the size of its nanocrystals. And that allows researchers to change and fine tune the material's properties.

Several of the material's properties are already ideal for solar cells: The material's band gap - the amount of energy required for a light particle to knock an electron loose - is ideal for solar cells. The material, unlike other materials used in solar cells, is also stable when exposed to air and water.

So, the chemists think they have a material that will work well in solar cells, but without the toxicity, scarcity or costs.

"We believe the experimental and computational results reported here," they wrote in their paper, "will help advance the fundamental study and exploration of these and similar materials for energy conversion devices."

Iowa State University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to