Nav: Home

Research paves the way for next generation of optical tweezers

March 14, 2019

Scientists have developed a pioneering new technique that could pave the way for the next generation of optical tweezers.

A team of researchers from the Universities of Glasgow, Bristol and Exeter, have created a new method of moving microscopic objects around using micro-robotics.

Currently, optical tweezers - which are used to study proteins, biological molecular motors, DNA and the inner life of cells - use light to hold objects as small as a single nanoparticle in one place.

They use the unusual optical forces created by tightly focused laser beams to trap and manipulate particles, essentially acting as 'microscopic hands' for scientists.

The first optical tweezers were developed in the 1970s by Dr Arthur Ashkin. Since then, a series of breakthroughs have allowed scientists to manipulate complex objects such as viruses and cells. Dr Ashkin, now in his 90s, was recently awarded the Nobel Prize in Physics in 2018 for his pioneering work.

However, this existing technique has limitations - the high intensities of light required by optical tweezers can damage live biological specimens, and also restrict the types of objects that can be held.

Now, the research team have developed a new technique that enables optical trapping without focussing any laser light onto the trapped particles.

To do this they have developed optically trapped micro-rotors, which are placed in the liquid surrounding the particle, and used to manipulate its movement using fluid flow.

As the micro-rotors are rotated, they create a wave in the liquid that exerts a force on the particle - much in the same way that a jet of water in a Jacuzzi can push away anything that floats past.

By controlling the directions of each micro-rotor, scientists can either move the particle to a specific location or hold it in one spot - allowing particles to be sorted or imaged at high resolution.

Crucially, this new technique allows scientists to use flow to pinpoint one specific particle at a time, and not affect others in close proximity.

The research is published in the leading journal Nature Communications.

Dr Phillips, part of the University of Exeter's Physics department, and senior author on the study said: "This research expands the applications of optical tweezers to trap particles of any material in a liquid environment, and without risk of photo-damage, and adds to the toolbox of techniques that allow us develop new nanotechnologies."
-end-
"Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation" is published in Nature Communications on Thursday, March 14 2019.

University of Exeter

Related Physics Articles:

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.
Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.
Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.
Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.