Nav: Home

Fingermark imaging for drug detection

March 14, 2019

In a paper to be published in the forthcoming issue in NANO, researchers from Zhejiang have uncovered a novel method of using nanocarrier-based biological fluorescent probes for detecting amphetamine and ketamine in latent fingermark, in a bid to combat drug abuse. This method has the potential to be extended to other drugs and molecules.

Drug abuse has become an increasingly serious problem all over the world. How to determine whether a person is taking drugs? Fingermark imaging as well as drug detection in fingermark residues can combine the chemical information with personal identification for forensic purposes. Nanocarrier-based biolabeling has been employed to develop latent fingermarks and simultaneously collect additional chemical information from fingermarks with advantages of good sensitivity and selectivity. However, present immunoassay methods show the limitation that only one drug can be checked in a single fingermark by one test.

In practical cases, the types of drugs in fingerprints are generally unknown. Moreover, the number of fingerprints obtained at the crime scene is usually limited. Therefore, it is necessary to identify more than one drug in a single fingerprint simultaneously with simple procedures.

In this work, color fluorescent polystyrene nanoparticles are introduced as nanocarrier in biological fluorescent probes (BFPs) for simultaneous detection of ketamine (KET) and amphetamine (AMP) in latent fingermarks. Ketamine and amphetamine are two of the most commonly abused synthetic drugs in China during recent years, both of which cause adverse effects on human central nervous system as well as other health problems. Antibodies are assembled on carboxyl modified nanoparticles by amide linkage with the assistance of carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Each fluorescent color corresponds to a specific drug antibody, i.e., red corresponds to ketamine and green to amphetamine. BFPs can selectively combine with target analyte in ridge residue when incubated over the fingermark. After removing the unbound BFPs, fluorescence signal originated from nanoparticles of the bound probes contributes to fingermark imaging. Meanwhile, presence or absence of drug(s) can be directly determined by the fluorescent colors when the fingermark is checked in red and green channels. Therefore, fingermark imaging and simultaneous identification of dual-drug in a single fingermark is realized by a one-step test without using secondary antibodies.
-end-
This work is supported by Zhejiang Provincial Natural Science Foundation of China (LQ16B050002), Project of Educational Commission of Zhejiang Province of China (Y201533271) and National Key Research and Development Program of China (2017YFC0803606).

Corresponding author for this study is Jing Zhou, zhoujing@zjjcxy.cn.

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: A schematic illustration of nanocarrier-based biological fluorescent probes for simultaneous detection of ketamine and amphetamine in latent fingermark. Antibodies are assembled on carboxyl modified nanoparticles by amide linkage with the assistance of carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Red fluorescent color corresponds to ketamine and green to amphetamine. Biological fluorescent probes can selectively combine with target analyte in ridge residue when incubated over the fingermark. After removing the unbound BFPs, fluorescence signal originated from nanoparticles of the bound probes contributes to fingermark imaging. Meanwhile, presence or absence of drug(s) can be directly determined by the fluorescent colors when the fingermark is checked in red and green channels.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 135 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.