Nav: Home

Fingermark imaging for drug detection

March 14, 2019

In a paper to be published in the forthcoming issue in NANO, researchers from Zhejiang have uncovered a novel method of using nanocarrier-based biological fluorescent probes for detecting amphetamine and ketamine in latent fingermark, in a bid to combat drug abuse. This method has the potential to be extended to other drugs and molecules.

Drug abuse has become an increasingly serious problem all over the world. How to determine whether a person is taking drugs? Fingermark imaging as well as drug detection in fingermark residues can combine the chemical information with personal identification for forensic purposes. Nanocarrier-based biolabeling has been employed to develop latent fingermarks and simultaneously collect additional chemical information from fingermarks with advantages of good sensitivity and selectivity. However, present immunoassay methods show the limitation that only one drug can be checked in a single fingermark by one test.

In practical cases, the types of drugs in fingerprints are generally unknown. Moreover, the number of fingerprints obtained at the crime scene is usually limited. Therefore, it is necessary to identify more than one drug in a single fingerprint simultaneously with simple procedures.

In this work, color fluorescent polystyrene nanoparticles are introduced as nanocarrier in biological fluorescent probes (BFPs) for simultaneous detection of ketamine (KET) and amphetamine (AMP) in latent fingermarks. Ketamine and amphetamine are two of the most commonly abused synthetic drugs in China during recent years, both of which cause adverse effects on human central nervous system as well as other health problems. Antibodies are assembled on carboxyl modified nanoparticles by amide linkage with the assistance of carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Each fluorescent color corresponds to a specific drug antibody, i.e., red corresponds to ketamine and green to amphetamine. BFPs can selectively combine with target analyte in ridge residue when incubated over the fingermark. After removing the unbound BFPs, fluorescence signal originated from nanoparticles of the bound probes contributes to fingermark imaging. Meanwhile, presence or absence of drug(s) can be directly determined by the fluorescent colors when the fingermark is checked in red and green channels. Therefore, fingermark imaging and simultaneous identification of dual-drug in a single fingermark is realized by a one-step test without using secondary antibodies.
-end-
This work is supported by Zhejiang Provincial Natural Science Foundation of China (LQ16B050002), Project of Educational Commission of Zhejiang Province of China (Y201533271) and National Key Research and Development Program of China (2017YFC0803606).

Corresponding author for this study is Jing Zhou, zhoujing@zjjcxy.cn.

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: A schematic illustration of nanocarrier-based biological fluorescent probes for simultaneous detection of ketamine and amphetamine in latent fingermark. Antibodies are assembled on carboxyl modified nanoparticles by amide linkage with the assistance of carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Red fluorescent color corresponds to ketamine and green to amphetamine. Biological fluorescent probes can selectively combine with target analyte in ridge residue when incubated over the fingermark. After removing the unbound BFPs, fluorescence signal originated from nanoparticles of the bound probes contributes to fingermark imaging. Meanwhile, presence or absence of drug(s) can be directly determined by the fluorescent colors when the fingermark is checked in red and green channels.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 135 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...