Nav: Home

Artificial intelligence learns to predict elementary particle signals

March 14, 2019

Scientists from the Higher School of Economics and Yandex have developed a method that accelerates the simulation of processes at the Large Hadron Collider (LHC). The research findings were published in Nuclear Instruments and Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

Experiments in high energy physics require work with big data. For example, at the LHC, millions of collisions occur every second, and detectors register these particles and determine their characteristics. But in order to receive a precise analysis of experimental data, it is necessary to know how the detector reacts to known particles. Typically, this is done using special software that is configured for the geometry and physics of a particular detector.

Such packages provide a fairly accurate description of the medium's response to the passage of charged particles, but the rate of generation of each event can be very slow. In particular, the simulation of the single LHC event may take up to several seconds. Given that millions of charged particles collide every second in the collider itself, an exact description becomes inaccessible.

Researchers from HSE and the Yandex Data Analysis School were able to speed up the simulation using Generative Adversarial Networks. These are comprised of two neural networks that compete with each other during competitive training. This training method is used, for example, to generate photos of people who don't exist. One network learns to create images similar to reality, and the other seeks to find differences between artificial and real representations.

'It's amazing how methods that were developed basically to generate realistic photos of cats, allow us to speed up physical calculations by several orders of magnitude,' notes Nikita Kaseev, a PhD student at HSE and coauthor of the study.

The researchers trained generative competitive networks to predict the behavior of charged elementary particles. The results showed that physical phenomena can be described using neural networks highly accurately.

'Using generative competitive networks to quickly simulate detector behavior will certainly help future experiments,' says Denis Derkach, Assistant Professor in the Faculty of Computer Science and coauthor of the study. 'Essentially, we used the most modern training methods available in data science and our knowledge of the physics of detectors. The diversity of our team, which consisted of data scientists and physicist, also made it possible.'
-end-


National Research University Higher School of Economics

Related Large Hadron Collider Articles:

Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons
New findings from University of Kansas researchers center on work at the Large Hadron Collider to better understand the behavior of gluons.
Springer Nature publishes study for a CERN next generation circular collider
Back in January, CERN released a conceptual report outlining preliminary designs for a Future Circular Collider (FCC), which if built, would have the potential to be the most powerful particle collider the world over.
Large cells for tiny leaves
Scientists identify protein that controls leaf growth and shape.
NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.
Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.
More Large Hadron Collider News and Large Hadron Collider Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...