Nav: Home

New method to reduce uranium concentration in contaminated water

March 14, 2019

In a paper to be published in the forthcoming issue in NANO, researchers from China have proposed a way to reduce Uranium concentration in contaminated water. As an essential nuclear fuel, Uranium has been greatly used an inevitably released to the environment. Without proper disposal, exposure to uranium can result in serious harms to the ecology and health of humans.

Mesoporous SBA-15 with ordered mesostructures, high surface areas and large pore sizes have been applied to concentrate U(VI) from aqueous solutions. The exploration of SBA-15 with higher performances also keeps developing. For instance, the synthesis of functional SBA-15 with organic ligands containing N, O, S and P elements, and with controllable morphologies (e.g., rods, plates, and fibers) and tunable mesostructures have also been reported. However, the comprehensive evaluation of structure-composition-function relationships, including the interconnected influence of textural characteristics of sorbents and the interaction mechanism of U(VI)-surface modified chemical groups, has not been fully studied yet.

This paper investigates how the synergistic integration of pore mesochannels and surface functionalization of SBA-15 enables high-performance U(VI) sorption. In this study, we report the rapid sorption of U(VI) with high capacities and selectivity by amidoxime functionalized ordered mesoporous SBA-15 with two typical morphologies (i.e., rods and plates) via a post-grafting method. The results show that the mesostructures including morphologies and pore length of SBA-15 perform the dominant function for the fast sorption kinetics (10 min for plates, 20 min for rods), while the modified amidoxime groups make excellent U(VI) sorption capacities (646.2 mg/g for plates, 499.8 mg/g for rods at pH 5.0 and T 298.15 K) and high selectivity possible. U(VI) adsorbed amidoxime-functionalized SBA-15 can also be effectively regenerated by HCl solutions and reused well after six cycles, exhibiting favorable potentials for the uptake of radionuclides in real environmental management.
-end-
This work was supported by CAS Pioneer Hundred Talents Program, the CASHIPS Director's Fund (No. YZJJ2018QN20), the National Natural Science Foundation of China (Nos. 21875257 and 51708215) and Henan Science and Technology Project (No. 152102310343).

Additional co-authors of this work in the journal NANO are Ziyan Yang and Xiaoli Yang form North China University of Water Resources and Electric Power, Junfeng Wu from Henan University of Urban Construction.

Corresponding author for this study is Rui Hu, ruihu@rntek.cas.cn.

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: A schematic illustration of the efficient sorption of uranium from aqueous solutions by mesoporous silica SBA-15 with various morphologies. The mesostructures including morphologies and pore length of SBA-15 perform the dominant function for the fast sorption kinetics, while the modified amidoxime groups make the excellent U(VI) sorption capacities and high selectivity possible.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 135 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Uranium Articles:

A new twist on uranium's origin story, by CSU scientists
Colorado State University biogeochemists found biogenic, non-crystalline uranium occurring naturally in a Wyoming roll front, offering new clues to the mineral's origins.
Two simple building blocks produce complex 3-D material
Northwestern University scientists have built a structurally complex material from two simple building blocks that is the lowest-density metal-organic framework ever made.
The formation of gold deposits in South Africa
The Witwatersrand basin in South Africa hosts the largest known gold repository on Earth -- but how was it formed?
Three new uranium minerals from Utah
Three new minerals discovered by a Michigan Tech alumnus are secondary crusts found in old uranium mines in southern Utah.
New technique could lead to safer, more efficient uranium extraction
The separation of uranium, a key part of the nuclear fuel cycle, could potentially be done more safely and efficiently through a new technique developed by chemistry researchers at Oregon State University.
Report finds additional radioactive materials in gas-well drill cuttings
Hydraulic fracturing has boosted US energy production while coming under scrutiny for its potential environmental impacts, mostly related to the wastewater the method generates.
Chemistry research breakthrough that could improve nuclear waste recycling technologies
Researchers from The University of Manchester have taken a major step forward by describing the quantitative modelling of the electronic structure of a family of uranium nitride compounds -- a process that could in the future help with nuclear waste recycling technologies.
Researchers model the way into a nuclear future
The main type of nuclear fuel is the uranium oxide pellet composition.
Nuclear CSI: Noninvasive procedure could identify criminal nuclear activity
Determining if an individual has handled nuclear materials is a challenge national defense agencies currently face.
How to measure oxygen coefficient in complex oxides
The international team of scientists, consisting of chemists from the Lomonosov Moscow State University, has devised a technique, which allows determination of oxidation states of uranium in complex oxides.

Related Uranium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...