Nav: Home

Researchers use algorithm from Netflix challenge to speed up biological imaging

March 14, 2019

WASHINGTON -- Researchers have repurposed an algorithm originally developed for Netflix's 2009 movie preference prediction competition to create a method for acquiring classical Raman spectroscopy images of biological tissues at unprecedented speeds. The advance could make the simple, label-free imaging method practical for clinical applications such as tumor detection or tissue analysis.

In Optica, The Optical Society's journal for high-impact research, a multi-institutional group of researchers report that a computational imaging approach known as compressive imaging can increase imaging speed by reducing the amount of Raman spectral data acquired. They demonstrate imaging speeds of a few tens of seconds for an image that would typically take minutes to acquire and say that future implementations could achieve sub-second speeds.

The researchers accomplished this feat by acquiring only a portion of the data typically required for Raman spectroscopy and then filling in the missing information with an algorithm developed to find patterns in Netflix movie preferences. While the algorithm did not win Netflix's $1 million prize, it has been used to meet other real-world needs, in this case a need for better biological imaging.

"Although compressive Raman approaches have been reported previously, they couldn't be used with biological tissues because of their chemical complexity," said Hilton de Aguiar, leader of the research team at École Normale Supérieure in France. "We combined compressive imaging with fast computer algorithms that provide the kind of images clinicians use to diagnose patients, but rapidly and without laborious manual post-processing."

Capturing biomedical processes

Raman spectroscopy is a non-invasive technique that requires no sample preparation to determine the chemical composition of complex samples. Although it has shown promise for identifying cancer cells and analyzing tissue for disease, it typically requires image acquisition speeds that are too slow to capture the dynamics of biological specimens. Processing the massive amount of data generated by spectroscopic imaging is also time-consuming, especially when analyzing a large area.

"With the methodology we developed, we addressed these two challenges simultaneously --increasing the speed and introducing a more straightforward way to acquire useful information from the spectroscopic images," said de Aguiar.

Optimizing speed

To speed up the imaging process, the researchers made their Raman system more compatible with the algorithm. They did this by replacing the expensive and slow cameras used in conventional setups with a cheap and fast digital micromirror device known as a spatial light modulator. This device selects groups of wavelengths that are detected by a highly sensitive single-pixel detector, compressing the images as they are acquired.

"A very fast spatial light modulator made it possible to acquire images and skip data bits very quickly," said de Aguiar. "The spatial light modulator we used is orders of magnitude less expensive and faster than other options on the market, making the overall optical setup cheap and fast."

The researchers demonstrated their new methodology using a Raman microscope to obtain spectroscopy images from brain tissue and single cells, both of which exhibit high chemical complexity. Their results showed that the method can acquire images at speeds of a few tens of seconds and accomplish a high level of data compression -- reducing the data up to 64 times.

The researchers believe that the new approach should work with most biological specimens, but they plan to test it with more tissue types to demonstrate this experimentally. In addition to clinical tools, the method could be useful for biological applications such as algae characterization. They also want to improve the scanning speed of their system to accomplish sub-second image acquisition.
-end-
Paper: F. Soldevila, J. Dong, E. Tajahuerce, S. Gigan, H. B. De Aguiar, "Fast compressive Raman bio-imaging via matrix completion," Optica, 6, 3, 341-346 (2019). DOI: https://doi.org/10.1364/OPTICA.6.000341

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 60 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Aaron Cohen
(301) 633-6773
aaroncohenpr@gmail.com

mediarelations@osa.org

The Optical Society

Related Algorithm Articles:

Scientists use algorithm to peer through opaque brains
A new algorithm helps scientists record the activity of individual neurons within a volume of brain tissue.
Algorithm generates origami folding patterns for any shape
A new algorithm generates practical paper-folding patterns to produce any 3-D structure.
New algorithm tracks neurons in bendy brain of freely crawling worm
Scientists at Princeton University have developed a new algorithm to track neurons in the brain of the worm Caenorhabditis elegans while it crawls.
Does my algorithm work? There's no shortcut for community detection
Community detection is an important tool for scientists studying networks, but a new paper published in Science Advances calls into question the common practice of using metadata for ground truth validation.
'Cyclops' algorithm spots daily rhythms in cells
Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness.
An algorithm that knows when you'll get bored with your favorite mobile game
Researchers from the Tokyo-based company Silicon Studio, led by Spanish data scientist África Periáñez, have developed a new algorithm that predicts when a user will leave a mobile game.
Algorithm identified Trump as 'not-married'
Scientists from Russia and Singapore created an algorithm that predicts user marital status with 86% precision using data from three social networks instead of one.
A novel positioning algorithm based on self-adaptive algorithm
Much attention has been paid to the Taylor series expansion (TSE) method these years, which has been extensively used for solving nonlinear equations for its good robustness and accuracy of positioning.
Algorithm can create a bridge between Clinton and Trump supporters
The article that received the best student-paper award in the Tenth International Conference on Web Search and Data Mining (WSDM 2017) builds algorithmic techniques to mitigate the rising polarization by connecting people with opposing views -- and evaluates them on Twitter.
Deep learning algorithm does as well as dermatologists in identifying skin cancer
In hopes of creating better access to medical care, Stanford researchers have trained an algorithm to diagnose skin cancer.

Related Algorithm Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...