Nav: Home

Renewable energy won't make Bitcoin 'green,' but tweaking its mining mechanism might

March 14, 2019

The cryptocurrency Bitcoin is known for its massive energy footprint. Now, researcher Alex de Vries, from PricewaterhouseCoopers (PwC) in the Netherlands, suggests that renewable hydropower production cannot supply the large quantities of energy needed to power machinery used to validate Bitcoin transactions. In a Commentary publishing March 14 in the journal Joule, he also highlights the vast quantities of electronic waste produced by the Bitcoin network and calls for alternative strategies to curb the cryptocurrency's environmental impact.

de Vries, a senior consultant and blockchain specialist at PwC and founder of Digiconomist (@DigiEconomist), found that Bitcoin's consumption is more than 1,200 times greater than the maximum footprint of a transaction processed by the banking industry. He also estimates that Bitcoin consumed as much electrical energy as all of Hungary in 2018.

"Proponents of this digital currency have argued that, even if Bitcoin is using a lot of energy, it's not that harmful because they claim Bitcoin mining facilities use mostly excess renewable energy," says de Vries. "I decided to deep dive into this claim."

The problem lies primarily in the Bitcoin mining mechanism, in which "miners" use high-powered technology to search for valid numerical signatures that allow Bitcoin blocks (files recording Bitcoin transactions) to join the growing list of Bitcoin transaction records known as the "blockchain." In return for their efforts, miners may (but don't always) receive Bitcoin currency.

Using publicly available information about the computational power of the Bitcoin network and the efficiency and material composition of mining machines, de Vries identified major problems with reliance on renewable energy. Once a Bitcoin machine is activated, it is not shut down until it fails to continue operating profitably. Nevertheless, while this elevated electricity demand remains constant, the hydropower used to fuel it fluctuates. The Sichuan province of China, where miners are primarily located according to Bitcoin proponents, is generating three times more hydroelectricity during the wet summer months than during the dry winter months. Climate change is only expected to exacerbate this volatility, and coal-based energy is typically used to balance out these fluctuations.

"Based on these findings, the renewable energy currently going into Bitcoin mining cannot be considered 'green,' and this challenge of combining a constant energy requirement with variable renewable production will always exist," says de Vries. "It might even provide an incentive for the construction of new coal-based power plants in order to meet the higher base demand."

But de Vries also notes that even if Bitcoin mining devices could run on renewable energy alone, they would still be discarded as electronic waste at the end of their lifespans. The most popular machine on the market, an Application-Specific Integrated Circuit (ASIC) miner, cannot be repurposed because it is hardwired solely for mining Bitcoin. This means it is likely to wind up with other cast-off electronics in a landfill or incinerator, causing damage to the environment. Altogether, the study shows that Bitcoin currently generates as much electronic waste as a small nation, such as Luxembourg.

Even though Bitcoin still only constitutes a small portion of all currency transactions, de Vries thinks there is already cause to be concerned. "Its energy consumption and electronic waste generation are certainly not negligible at the moment, and they will likely escalate quickly to even more extreme amounts if Bitcoin manages to become widely used," he says.

However, de Vries believes these sustainability concerns can be averted by replacing the mechanism used to mine Bitcoin. An alternative "proof-of-stake" mechanism already used by the cryptocurrencies Dash and NXT (and soon to be used by Ethereum, which is transitioning away from a mining mechanism similar to Bitcoin's) does not depend on computing power to build the blockchain. This adjustment would cut Bitcoin's energy consumption by a striking 99.99% and would eliminate the need for specialized, non-repurposable hardware.

"Ultimately, Bitcoin is just software," says de Vries. "The mining mechanism can be replaced. The challenge is that the entire network needs to agree to this change."
-end-
Joule, de Vries: "Renewable Energy Will Not Solve Bitcoin's Sustainability Problem" https://www.cell.com/joule/fulltext/S2542-4351(19)30087-X

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Renewable Energy Articles:

Cold conversion of food waste into renewable energy and fertilizer
Researchers from Concordia's Department of Building, Civil and Environmental Engineering (BCEE) in collaboration with Bio-Terre Systems Inc. are taking the fight against global warming to colder climes.
Researchers offer novel method for calculating the benefits of renewable energy
Researchers from the Higher School of Economics (HSE) have developed a novel system for assessing the potential of renewable energy resources.
Renewable energy needed to drive uptake of electric vehicles
Plugging into renewable energy sources outweighs the cost and short driving ranges for consumers intending to buy electric vehicles, according to a new study.
Renewable energy has robust future in much of Africa
Africa's energy demand is expected to triple by 2030. A new Berkeley study shows that the continent's energy needs can be met with renewable power from wind and solar in a way that reduces reliance on undependable hydroelectric power and imported fossil fuels, while at the same time saving money and providing jobs.
100 percent renewable energy sources require overcapacity
Germany decided to go nuclear-free by 2022. A CO2-emission-free electricity supply system based on intermittent sources, such as wind and solar -- or photovoltaic (PV) -- power could replace nuclear power.
Biofuel matchmaker: Finding the perfect algae for renewable energy
A new streamlined process could quickly pare down heaps of algae species into just a few that hold the most promise for making biofuel.
UChicago startup turns renewable energy into natural gas
One of the biggest challenges to wider adoption of wind and solar power is how to store the excess energy they often produce.
Improved water splitting advances renewable energy conversion
Washington State University researchers have found a way to more efficiently create hydrogen from water -- an important key in making renewable energy production and storage viable.
Research targets conflict over wind farming and renewable energy in Korea
Griffith University is undertaking a major international project to help address community conflict and disruption over wind farms and their implementation in Korea.
Move over, solar: The next big renewable energy source could be at our feet
Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike.

Related Renewable Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...