Nav: Home

Research demonstrates how immunotherapy may be effective for fighting TB

March 14, 2019

In part because of its resistance to many antibiotics, tuberculosis kills approximately 1.7 million people worldwide each year. But new research from the University of Notre Dame suggests that structures released by the infected cells may be used in tandem with antibiotics to boost the body's immune system, helping fight off the disease.

The paper, published in EMBO Reports by Jeffrey Schorey, the George B. Craig Jr. Professor, and Yong Cheng, research assistant professor, both in the Department of Biological Sciences, describes how the structures, called extracellular vesicles (EVs), contain Mycobacterium tuberculosis RNA and transfer it to other cells. This starts a built-in weapon system against the disease in the form of an immune response.

Though extracellular vesicles containing RNA from viruses had been discovered years ago, Schorey and his collaborators recently discovered RNA from bacteria -- Mycobacterium tuberculosis -- in EVs. This discovery led to experiments described in the EMBO Reports paper to determine how the bacteria's RNA was affecting the "target" cell, including cells infected by M. tuberculosis.

A key research discovery hinges on macrophages, which are cells of the immune system. These cells, when treated with EVs released from M. tuberculosis-infected cells, can control the infection better than macrophages not previously exposed to the EVs, Schorey and Cheng determined. "It had never before been shown that bacterial RNA in EVs can activate this sensing pathway, one that has primarily been thought to be involved in viral sensing," Schorey said. The authors then show that EV-treated macrophages produce compounds like reactive oxygen species that can promote the killing of the M. tuberculosis once it infects the macrophage.

The discovery is important because it can lead to future therapies for treatment of tuberculosis. Preliminary data in the paper suggest that antibiotics might work better when combined with an immunotherapy based on using these EVs. The data from the mouse model showed that more of the bacterial-infected cells were killed with the combination of therapies than either antibiotics or EVs alone, Schorey noted.

The next steps for future research are to try this approach with other laboratory models, with the goal that they also show the benefit of combining EVs, as immunotherapy treatments, with antibiotics to treat drug-resistant tuberculosis.

Worldwide, more than 10 million people develop active tuberculosis each year. Furthermore, over two billion people are infected with the bacteria. This results in a reservoir of infected people who may develop disease if their immune systems are compromised.
-end-
Schorey is affiliated with Advanced Diagnostics and Therapeutics, the Eck Institute for Global Health and the Center for Rare and Neglected Diseases at Notre Dame. The research was funded by the National Institute of Allergy and Infectious Diseases.

University of Notre Dame

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...