Nav: Home

Using an anti-smoking drug to control neurons

March 14, 2019

An anti-smoking drug now has a new job - as a chemical switch to turn select neurons on or off.

The drug latches on to designer proteins, called ion channels, that control whether or not a neuron will send a message. By putting those proteins only in certain groups of neurons, scientists can target modulation of specific cells while leaving other neurons unaffected.

The system, developed by Scott Sternson, a group leader at the Howard Hughes Medical Institute's Janelia Research Campus, is already helping researchers untangle brain circuits in mice and primates. Someday, it might lead to more targeted treatments in humans for conditions such as epilepsy or pain, Sternson and his colleagues report March 14, 2019, in the journal Science.

Other scientists working on this approach, called chemogenetics, "often use molecules that would not be appropriate for human therapy," Sternson says. "It's still many steps to the clinic, but we're trying to shorten that route."

Chemogenetics has been around for about two decades: scientists have designed matched pairs of drugs and receptors that can change the activity of neurons in mice. Sternson's system uses a drug that gets into the brain and is already approved in humans. And it targets ion channel proteins, which influence neuron activity directly, so there's less potential for side effects. That might make it viable for eventual clinical use, he says -- a barrier that chemogenetic tools haven't yet hurdled.

Sternson's team combed through dozens of already-approved drugs before picking varenicline, a drug that reduces nicotine cravings. Then, the researchers tweaked the structure of two different ion channel proteins to make varenicline more likely to bind. One protein triggers neurons to send messages when varenicline latches on. Another blocks neurons from sending messages when varenicline is present.

"These are the most potent chemogenetic receptors described so far," Sternson says. Even low doses of varenicline - well below the level used for smoking cessation - can have a big effect on neural activity.

For now, scientists can use the system to draw connections between neural activity and an animal's behavior. Sternson's team has also engineered varenicline variants that are even better at targeting proteins and work at even lower doses than the original.

"For research applications, you want the most selective tool possible," Sternson says.

Down the road, the ability to selectively turn cells on or off could fuel more precise treatments for certain diseases. For example, some patients with severe epilepsy have surgery to remove the affected part of the brain. Drugs that target only neurons in this region could be a less invasive way to treat these patients. Sternson also envisions future pain treatments that send drugs only to an injured area, rather than to the entire body. This is important for reducing the incidence of addiction to painkillers, he says.

Janelia has licensed Sternson's technology to a new company, Redpin Therapeutics, that's running pre-clinical studies. Those experiments are the first step toward eventually testing the technology in people.
-end-
Citation

Christopher J. Magnus, Peter H. Lee, Jordi Bonaventura, Roland Zemla, Juan L. Gomez, Melissa Ramirez, Xing Hu, Adriana Galvan, Jayeeta Basu, Michael Michaelides, and Scott M. Sternson. "Ultrapotent chemogenetics for research and potential clinical applications." Science. Published online March 14, 2019.

Howard Hughes Medical Institute

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.