Advances in the characterisation of the oyster mushroom genes

March 15, 2005

The oyster mushroom (Pleurotus ostreatus), apart from reducing cholesterol and having anticancerogenic properties, is characterised for its capacity for breaking down cellulose. Finding out which genes are responsible for this activity - the reason why the fungus is sometimes used as a decontaminating agent, was the aim of the PhD thesis by Arantza Eizmendi Goikoetxea, which she defended at the Public University of Navarre with the title, Molecular Characterisation of a family of genes of cellobiohydrolases in the "Pleurotus ostreatus" fungus.

Degradation of cellulose

In nature, the oyster mushroom grows on dead trunks of trees where the lignin and cellulose - the two principal components of wood - are being broken down. Degradation of lignin has been studied over the years by a number of research teams that have characterised the genes involved. But nobody, to date, has tackled the degradation of cellulose from a molecular perspective.

Cellulose is the most abundant biological polymer on the planet. It is made up of units of D-glucose united by means of glycosidic links that form long polymer chains. The breaking down by live organisms takes place through the action of three types of enzymes: endogluconases, cellobiohydrolases y b-glucosidases.

All these, necessary for the complete breaking down of cellulose, function by hydrolysing the glycoside links, but they vary in the specificity of substrate: the endoglucanases attack the glycosidic links within the cellulose molecule, the cellobiohydrolases act by liberating units of cellobiose from either end of the cellulose chain and the b-glucosidases hydrolyse the cellobiose molecules, producing glucose as end product.

In her PhD thesis Arantza Eizmendi Goikoetxea has analysed the activity of one of these types of enzymes: the cellobiohydrolases. To this end, she cloned, isolated and sequenced those genes of the oyster mushroom responsible for this activity and investigated the culture in which each of these genes expresses itself.

Five genes of one family

The PhD work resulted in the isolation of five genes of the oyster mushroom, of the Florida variety, and the expression thereof giving rise to different cellobiohydrolases, thus demonstrating the existence of a multigenic family responsible for the said enzymatic activity. Also, using such genomic sequences as a probe, it has been possible to detect what are the conditions under which the expression of each one of the genes is produced. This has enabled the synthesis of the cDNA of each gene and, by means of comparison with the corresponding genomic sequence, the characterisation of their structure.

Regarding their location on the linkage map, it has been found that four of the five genes are located on the same chromosome, quite near each other, and the other is located on a different chromosome. It is precisely this fifth gene that is structurally distinct from the others: it lacks a fragment at its end.

It should be pointed out that the genes that are together and the lone one are located on chromosomes where there are also genes responsible for the breaking down of lignin. This is of great interest because lignin and cellulose are found together in nature. They are found together in wood and it would seem logical that the genes responsible for the degradation of one or the other are located close together on the genome, on the same chromosomes.
-end-


Elhuyar Fundazioa

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.