New test of snow's thickness may 'bear' results key to polar climate studies, wildlife habitat

March 15, 2006

A NASA-funded expedition to the Arctic to map the thickness of snow has a legion of unexpected furry fans hailing from one of the world's coldest regions: polar bears.

From mid-March to mid-April, researchers embark on an Arctic field experiment using a new airborne radar to determine the accuracy of satellite measurements of snow's thickness atop polar sea ice. Snow thickness is just one of several cutting-edge measurements taken by the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA's Aqua satellite.

The ability to accurately measure snow depth will help researchers understand much more about how climate changes in Earth's polar regions. As a bonus, this research will tell wildlife biologists and ecologists about the amount of snow polar bears and other Arctic wildlife have to build their habitats.

Historically, it has been very difficult to measure the thickness of snow on top of the sea ice. "It's not as easy as going into your backyard and sticking a ruler in the snow to measure the snowfall," said Thorsten Markus, a cryospheric scientist at NASA's Goddard Space Flight Center, Greenbelt, Md., and co-principal investigator of the field campaign. "Measuring snow's thickness is something that people have done for many years from ships. Navigating those waters posed dangers to human beings, and did not always garner the most accurate results. In this new age, satellites have the potential to provide the most precise measurements of snow depth ever."

Prasad Gogineni, an engineer from the University of Kansas, Lawrence, developed the new ultra wide-band snow radar, a system that can now measure snow thickness from an airplane. These airborne measurements will confirm, or validate, data taken by the satellite. The new radar transmits a pulse that penetrates the snow on top of the sea ice. It then measures the return time for both the reflection from the top of the snow blanket and from the bottom where the snow touches the ice. The difference in reflection times is converted to a snow depth. The blanket of snow that covers Arctic sea ice plays an important role in the region's climate by slowing the flow of heat from ocean waters to the air. Polar sea ice is an insulator between the warm ocean and the very cold atmosphere. Snow acts like a heavy blanket on top of the sea ice, providing a thicker, added layer of insulation between the water and the atmosphere.

A thick insulating blanket of snow can also be vital to polar bears and other Arctic wildlife. Polar bears living in Alaska, Canada, Greenland, Norway, and Russia dig out their dens on snowy slopes to give birth or to shelter their young during blizzards. The temperature under a layer of snow does not usually fall below freezing, so polar bears will also curl up and allow snow to drift around their bodies to form an insulating layer of warmth. The less snowfall on the sea ice the less snow polar bears have to build their dens.

"Officials who manage wildlife are very interested in our measurement capabilities," said Markus. "In addition to polar bears needing a lot of snow to create their dens, polar foxes and sled dogs use the snow for insulation. Field mice and lemmings can remain active throughout the coldest winters, searching for plant food in a network of tunnels under the snow."

AMSR-E measures several important aspects of the Earth critical to global change science and monitoring efforts in addition to snow depth, including precipitation, oceanic water vapor, cloud water, near-surface wind speed, sea surface temperature, soil moisture, and sea ice. This year's Arctic experiment will be the second Alaskan Arctic field campaign to confirm measurements made by AMSR-E.

"Over the last several decades, we've observed significant changes in the Arctic and in particular the decreasing Arctic sea ice cover," said Donald Cavalieri, a Goddard senior research scientist, satellite remote sensing specialist, and lead principal investigator for this year's Arctic field experiment. "We need to continue to monitor these changes and to understand why this is happening because it could have very profound effects on our climate and wildlife."

This project is a collaboration between NASA; the U.S. Army Cold Regions Research and Engineering Lab, Hanover, N.H.; the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory, Boulder, Colo.; the University of Kansas, Lawrence; The Johns Hopkins University Applied Physics Laboratory, Laurel, Md.; and the University of Colorado at Boulder.
-end-


NASA/Goddard Space Flight Center

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.