Century of data shows intensification of water cycle but no increase in storms or floods

March 15, 2006

A review of the findings from more than 100 peer-reviewed studies shows that although many aspects of the global water cycle have intensified, including precipitation and evaporation, this trend has not consistently resulted in an increase in the frequency or intensity of tropical storms or floods over the past century. The USGS findings, which have implications on the effect of global climate change, are published today in the Journal of Hydrology.

"A key question in the global climate debate is if the climate warms in the future, will the water cycle intensify and what will be the nature of that intensification," said USGS scientist Thomas Huntington, who authored the study. "This is important because intensification of the water cycle could change water availability and increase the frequency of tropical storms, floods, and droughts, and increased water vapor in the atmosphere could amplify climate warming."

For the report, Huntington reviewed data presented in more than 100 scientific studies. Although data are not complete, and sometimes contradictory, the weight of evidence from past studies shows on a global scale that precipitation, runoff, atmospheric water vapor, soil moisture, evapotranspiration, growing season length, and wintertime mountain glacier mass are all increasing. The key point with the glaciers is that there is more snowfall resulting in more wintertime mass accumulation - another indication of intensification.

"This intensification has been proposed and would logically seem to result in more flooding and more intense tropical storm seasons. But over the observational period, those effects are just not borne out by the data in a consistent way," said Huntington.

Huntington notes that the long term and global scale of this study could accommodate significant variability, for example, the last two Atlantic hurricane seasons.

"We are talking about two possible overall responses to global climate warming: first an intensification of the water cycle being manifested by more moisture in the air, more precipitation, more runoff, more evapotranspiration, which we do see in this study; and second, the potential effects of the intensification that would include more flooding and more tropical storms which we don't see in this study," said Huntington.
Editors: Copies of the report "Evidence for intensification of the global water cycle: Review and synthesis," are available to reporters from the author.

The USGS serves the nation by providing reliable scientific information to: describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.

US Geological Survey

Related Flooding Articles from Brightsurf:

Coastal flooding will disproportionately impact 31 million people globally
Indiana University researchers analyzed these geographic regions, which include cities like New Orleans, Bangkok, and Shanghai, using a new global dataset to determine how many people live on river deltas, how many are vulnerable to a 100-year storm surge event, and the ability of the deltas to naturally mitigate impacts of climate change.

New woodlands can help reduce flooding risk within 15 years
New research by the University of Plymouth suggests the planting of more trees could have a significant and positive effect in preventing flash flooding.

Land use change leads to increased flooding in Indonesia
While high greenhouse gas emissions and biodiversity loss are often associated with rapid land-use change in Indonesia, impacts on local water cycles have been largely overlooked.

Climate change: Coastal flooding could threaten up to 20% of global GDP
Coastal flooding events could threaten assets worth up to 20% of the global GDP by 2100, a study in Scientific Reports suggests.

River plants counter both flooding and drought to protect biodiversity
'Water plants are a nuisance in streams, blocking the flow.

Scientists predict dramatic increase in flooding, drought in California
California may see a 54 percent increase in rainfall variability by the end of this century, according to research from a UC Davis atmospheric scientist.

Multiple flooding sources threaten Honolulu's infrastructure
In a study published in Scientific Reports, researchers at the University of Hawai'i at Mānoa, found in the next few decades, sea level rise will likely cause large and increasing percentages of land area to be impacted simultaneously by the three flood mechanisms.

Climate change: Extreme coastal flooding events in the US expected to rise
Extreme flooding events in some US coastal areas could double every five years if sea levels continue to rise as expected, a study published in Scientific Reports suggests.

Study find delta helps to decrease the impact of river flooding
Most coastal cities and ports face a double threat from storm surge and river flooding.

Texas A&M researchers develop flooding prediction tool
By incorporating the architecture of city drainage systems and readings from flood gauges into a comprehensive statistical framework, researchers at Texas A&M University can now accurately predict the evolution of floods in extreme situations like hurricanes.

Read More: Flooding News and Flooding Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.