Sea level rise due to global warming poses threat to New York City

March 15, 2009

TALLAHASSEE, Fla. -- Global warming is expected to cause the sea level along the northeastern U.S. coast to rise almost twice as fast as global sea levels during this century, putting New York City at greater risk for damage from hurricanes and winter storm surge, according to a new study led by a Florida State University researcher.

Jianjun Yin, a climate modeler at the Center for Ocean-Atmospheric Prediction Studies (COAPS) at Florida State, said there is a better than 90 percent chance that the sea level rise along this heavily populated coast will exceed the mean global sea level rise by the year 2100. The rising waters in this region -- perhaps by as much as 18 inches or more -- can be attributed to thermal expansion and the slowing of the North Atlantic Ocean circulation because of warmer ocean surface temperatures.

Yin and colleagues Michael Schlesinger of the University of Illinois at Urbana-Champaign and Ronald Stouffer of Geophysical Fluid Dynamics Laboratory at Princeton University are the first to reach that conclusion after analyzing data from 10 state-of-the-art climate models, which have been used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Yin's study, "Model Projections of Rapid Sea Level Rise on the Northeast Coast of the United States," will be published online March 15 in the journal Nature Geoscience.

"The northeast coast of the United States is among the most vulnerable regions to future changes in sea level and ocean circulation, especially when considering its population density and the potential socioeconomic consequences of such changes," Yin said. "The most populous states and cities of the United States and centers of economy, politics, culture and education are located along that coast."

The researchers found that the rapid sea-level rise occurred in all climate models whether they depicted low, medium or high rates of greenhouse-gas emissions. In a medium greenhouse-gas emission scenario, the New York City coastal area would see an additional rise of about 8.3 inches above the mean sea level rise that is expected around the globe because of human-induced climate change.

Thermal expansion and the melting of land ice, such as the Greenland ice sheet, are expected to cause the global sea-level rise. The researchers projected the global sea-level rise of 10.2 inches based on thermal expansion alone. The contribution from the land ice melting was not assessed in this study due to uncertainty.

Considering that much of the metropolitan region of New York City is less than 16 feet above the mean sea level, with some parts of lower Manhattan only about 5 feet above the mean sea level, a rise of 8.3 inches in addition to the global mean rise would pose a threat to this region, especially if a hurricane or winter storm surge occurs, Yin said.

Potential flooding is just one example of coastal hazards associated with sea-level rise, Yin said, but there are other concerns as well. The submersion of low-lying land, erosion of beaches, conversion of wetlands to open water and increase in the salinity of estuaries all can affect ecosystems and damage existing coastal development.

Although low-lying Florida and Western Europe are often considered the most vulnerable to sea level changes, the northeast U.S. coast is particularly vulnerable because the Atlantic meridional overturning circulation (AMOC) is susceptible to global warming. The AMOC is the giant circulation in the Atlantic with warm and salty seawater flowing northward in the upper ocean and cold seawater flowing southward at depth. Global warming could cause an ocean surface warming and freshening in the high-latitude North Atlantic, preventing the sinking of the surface water, which would slow the AMOC.
-end-
For more stories, visit our news site at www.fsu.com

Florida State University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.