Nav: Home

Fossil or inorganic structure? Scientists dig into early life forms

March 15, 2017

TALLAHASSEE, Fla. -- An international team of researchers discovered that inorganic chemicals can self-organize into complex structures that mimic primitive life on Earth.

Florida State University Professor of Chemistry Oliver Steinbock and Professor Juan Manuel Garcia-Ruiz of the Consejo Superior de Investigaciones Cientificas (Spanish National Research Council) in Granada, Spain published an article in Wednesday's edition of Science Advances that shows fossil-like objects grew in natural spring water abundant in the early stages of the planet. But they were inorganic materials that resulted from simple chemical reactions.

This complicates the identification of Earth's earliest microfossils and redefines the search for life on other planets and moons.

"Inorganic microstructures can potentially be indistinguishable from ancient traces of life both in morphology and chemical composition," Garcia-Ruiz said.

Scientists had seen hints of this in past lab work, but now through Steinbock and Garcia-Ruiz's research, it is clear that this also happened in nature.

To do this work, the team of scientists collected and analyzed an extreme form of soda water from the Ney Springs in Northern California. Today this type of water is found in only a few spots worldwide, but it was widespread during the early stages of Earth's existence.

By addition of just one other ubiquitous chemical -- calcium or barium salt -- this water produces tiny structures, such as tubes, helices, and worm-like objects that are reminiscent of the shapes of primitive organisms. The water also generates complex mineral structures that are similar to nacre--the shiny substance of sea shells.

The similarities between actual fossils and these inorganic structures go beyond appearance and extend to their chemical nature. This will make it even more complicated for scientists examining early evidence of life on Earth.

"Our findings reveal an unusual convergence of simple biological shapes and complex inorganic structures and make the job of identifying earliest microfossils on Earth and life on other planets even harder," Steinbock said. "It's fascinating. How could I identify a fossil if I went to Mars? How could I convince myself that it was once alive? In the future, scientists will need to be even more alert that everything that looks like life is not necessarily life."
-end-
In addition to Steinbock and Garcia-Ruiz, the research team consisted of Electra Kotopoulou and Leonardo Tamborrino from the Spanish National Research Council in Spain and former Florida State University graduate student Elias Nakouzi.

This work was supported by the National Science Foundation and the European Research Council.

Florida State University

Related Fossil Articles:

Rare lizard fossil preserved in amber
The tiny forefoot of a lizard of the genus Anolis was trapped in amber about 15 to 20 million years ago.
Reconstructing the diet of fossil vertebrates
Paleodietary studies of the fossil record are impeded by a lack of reliable and unequivocal tracers.
Fossil is the oldest-known scorpion
Scientists studying fossils collected 35 years ago have identified them as the oldest-known scorpion species, a prehistoric animal from about 437 million years ago.
Fossil fish gives new insights into the evolution
An international research team led by Giuseppe Marramà from the Institute of Paleontology of the University of Vienna discovered a new and well-preserved fossil stingray with an exceptional anatomy, which greatly differs from living species.
What color were fossil animals?
Dr. Michael Pittman of the Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong led an international study with his PhD student Mr.
New Cretaceous fossil sheds light on avian reproduction
A team of scientists led by Alida Bailleul and Jingmai O'Connor from the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences reported the first fossil bird ever found with an egg preserved inside its body.
Fossil deposit is much richer than expected
Near the Dutch town of Winterswijk is an Eldorado for fossil lovers.
Researchers add surprising finds to the fossil record
A newly discovered fossil suggests that large, flowering trees grew in North America by the Turonian age, showing that these large trees were part of the forest canopies there nearly 15 million years earlier than previously thought.
Chinese Cretaceous fossil highlights avian evolution
A newly identified extinct bird species from a 127-million-year-old fossil deposit in northeastern China provides new information about avian development during the early evolution of flight.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
More Fossil News and Fossil Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.