Nav: Home

From space to the streets: New battery model also makes electric cars more reliable

March 15, 2017

They are able to predict how much the on-board battery will in fact be utilized in the course of the satellite's mission. The efficiency achieved here is about five times greater than with conventional systems. And electric cars on Earth are already benefiting from the procedure as well. The researchers will present their methods at the Cebit computer fair in Hannover (Hall 6, Stand E28).

"As far as we know, there is nothing like it in Earth orbit so far," says Holger Hermanns, professor of Computer Science at Saarland University. In collaboration with his doctoral student Gilles Nies and student Marvin Stenger, Hermanns has developed a procedure that allows for far more accurate predictions of the amount of battery power needed for a particular operation in space. Until now, space logisticians have tended to plan with overly large and heavy batteries, conceding valuable space needed for other equipment and experiments. "Amongst other things, not enough attention has been paid to the recovery effect, a phenomenon well-known from mobile phones. If the phone dies due to an empty battery, it often takes just a few minutes of waiting, then you can turn the phone back on again and use it, for a short time at least," Hermanns says. The new battery model can be used to monitor the exact amount of energy currently available, and determine how much of it is present in chemically bound form, that is, not immediately usable. This lets the computer scientists calculate the probability of the battery being discharged at any given moment.

The Saarbruecken computer scientists' findings can also be applied on Earth. "Batteries are ubiquitous -- and a good battery model helps in a lot of situations," says Holger Hermanns. Consider, for instance, the energy demands of an electric car: "So far, we could only answer the following question: Under ideal conditions, will the battery charge be enough for this electric car to make it to Frankfurt Airport? Now we can see whether the air conditioning system can be operated in such a way that you have a chance greater than 99 percent at all times to make it to your plane in time with the current charge", explains Hermanns.
-end-
Further Information:

Group website "Dependable Systems and Software": http://depend.cs.uni-sb.de/

Press photos are available free of charge at http://www.uni-saarland.de/pressefotos.

Please observe the terms of use.

Media Inquiries:

Professor Holger Hermanns
Dependable Systems and Software
Saarland University
Phone: +49-681-302-5631
E-Mail: hermanns@cs.uni-saarland.de

Editor:

Gordon Bolduan
Competence Center Computer Science Saarland
Phone: +49-681-302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Saarland University

Related Batteries Articles:

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.
Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
Detours may make batteries better
Adding atom-scale defects to battery materials may help them charge faster, theoretical models by Rice University scientists show.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.