Nav: Home

Dissection of the 2015 Bonin deep earthquake

March 15, 2017

Researchers at Tohoku University's Department of Geophysics, have been studying the deep earthquake which occurred on May 30, 2015, to the west of Japan's Bonin Islands.

The earthquake, which registered at about 670 km depth with moment magnitude (Mw) of 7.9 (Fig. 1), was the deepest global seismic event on record with M ≥ 7.8. It was also an isolated event located over 100 km deeper than the mainstream seismic zones recorded so far (Fig. 1). The event has attracted great interest among researchers because high pressure and high temperature at such great depth make it unusual for earthquakes to generate there.

In the Izu-Bonin region, the Pacific plate is subducting northwestward beneath the Philippine Sea plate. Subduction is a process where one of Earth's tectonic plates sinks under another. To date, several studies have investigated the source location of the Bonin deep earthquake relative to the subducting Pacific plate (slab*1). But there have been conflicting results because the mantle structure in and around the source zone is still unclear.

The Tohoku University team, led by Professor Dapeng Zhao, applied a method of seismic tomography to over five million P-wave arrival-time data recorded by world-wide seismic stations to determine a high-resolution mantle tomography beneath the Izu-Bonin region. The stations included those from the dense seismic networks in Japan and East China.

Seismic tomography*2 is an effective tool for investigating the three-dimensional (3-D) structure of the Earth's interior, in particular, for clarifying the morphology and structure of subducting slabs. Using that method, the team received clear images of the subducting Pacific slab as a high-velocity zone , and showed that the Bonin deep event occurred within the Pacific slab, which is penetrating the lower mantle (Fig. 2). Moreover, its hypocenter is located just beside the eastern slab boundary to the ambient mantle within the mantle transition zone*3.

They also found that the Pacific slab is split at about 28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north, the slab is flat in the mantle transition zone. Whereas in the south, the slab is nearly vertical and directly penetrating the lower mantle (Fig. 3).

These results suggest that this deep earthquake was caused by the joint effects of several factors. These include the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, as well as complex interactions between the slab and the ambient mantle. This work sheds new light on the deep slab structure and subduction dynamics.

*1 Slab: the subducting oceanic plate.

*2 Seismic tomography: a method to image the three-dimensional structure of the Earth's interior by inverting abundant seismic wave data generated by many earthquakes and recorded at many seismic stations.

*3 Mantle transition zone: a part of the Earth's mantle between depths of approximately 410 and 670 km, separating the upper mantle from the lower mantle.


The authors wish to thank the data centers of the Japanese Kiban Seismic Network, the China Seismic Network, and the International Seismological Center for providing the high-quality arrival-time data used in this study. This work was supported by research grants from the Japan Society for the Promotion of Science (Kiban-S 23224012) and MEXT (grant No. 26106005).

Tohoku University

Related Earthquake Articles:

From where will the next big earthquake hit the city of Istanbul?
Scientists reckon with an earthquake with a magnitude of 7 or greater in this region in the coming years.
Dissection of the 2015 Bonin deep earthquake
Researchers at Tohoku University's Department of Geophysics, have been studying the deep earthquake which occurred on May 30, 2015, to the west of Japan's Bonin Islands.
The search for the earthquake nucleus
Where a tectonic plate dives under another, in the so-called subduction zones at ocean margins, many strong earthquakes occur.
Better understanding post-earthquake fault movement
Preparation and good timing enabled Gareth Funning and a team of researchers to collect a unique data set following the 2014 South Napa earthquake that showed different parts of the fault, sometimes only a few kilometers apart, moved at different speeds and at different times.
The maximum earthquake magnitude for North Turkey
The Istanbul metropolitan region faces a high probability for a large earthquake in the near future.
Double dose of bad earthquake news
A team of researchers, including one from the University of California, Riverside, has discovered that earthquake ruptures can jump much further than previously thought, a finding that could have severe implications on the Los Angeles area and other regions in the world.
Discovery of hidden earthquake presents challenge to earthquake early-warning systems
Seismologists at the University of Liverpool studying the 2011 Chile earthquake have discovered a previously undetected earthquake which took place seconds after the initial rupture.
Babe Ruth and earthquake hazard maps
Northwestern University researchers have turned to an unusual source -- Major League Baseball -- to help learn why maps used to predict shaking in future earthquakes often do poorly.
Earthquake rupture halted by seamounts
Experts expected for some time that one of the next mega earthquakes occurs off northern Chile.
Catastrophic landslides post-earthquake
In the last few months, it has once more become clear that large earthquakes can solicit catastrophic landsliding.

Related Earthquake Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...