Nav: Home

Biochemists develop new way to control cell biology with light

March 15, 2017

Researchers at the University of Alberta have developed a new method of controlling biology at the cellular level using light.

The tool--called a photocleavable protein--breaks into two pieces when exposed to light, allowing scientists to study and manipulate activity inside cells in new and different ways.

First, scientists use the photocleavable protein to link cellular proteins to inhibitors, preventing the cellular proteins from performing their usual function. This process is known as caging.

"By shining light into the cell, we can cause the photocleavable protein to break, removing the inhibitor and uncaging the protein within the cell," said lead author Robert Campbell, professor in the Department of Chemistry. Once the protein is uncaged, it can start to perform its normal function inside the cell.

The tool is relatively easy to use and widely applicable for other research that involves controlling processes inside a cell.

The power of light-sensitive proteins, Campbell explained, is that they can be used to study the inner workings of any living cell. For example, optogenetic tools are widely used to activate brain activity in mice.

"We could use the photocleavable protein to study single bacteria, yeast, human cells in the lab or even whole animals such as zebrafish or mice," explained Campbell. "To put these proteins inside an animal, we simply splice the gene for the protein into DNA and insert it into the cells using established techniques."

The gene for the photocleavable will be made available on Addgene, providing access to other researchers and scientists.

"We want to provide new ways to learn about cell biology," said Campbell. "I see countless potential applications for research and future investigation--from looking at which cells become which tissues in development biology, to investigating the possibilities of gene-editing technology."

The research was published in Nature Methods in March 2017. It was conducted in collaboration with Roger Thompson and post-doctoral fellow Alex Lohman from the Hotchkiss Brain Institute from the University of Calgary.
-end-


University of Alberta

Related Protein Articles:

Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...