Nav: Home

Like elephants, large working proteins have small handlers

March 15, 2017

AMHERST, Mass. - A graduate student's surprise observation in fundamental experiments with small binding molecules at work in protein folding has allowed biochemists at the University of Massachusetts Amherst to develop the first firm mathematical foundation to explain cell ligands' role in promoting proper protein folding.

As biochemist Lila Gierasch explains, proteins are the macromolecular machines that facilitate a wide array of physiological functions in all organisms. Starting from a neutral, noodle shape, these large molecules enter a complicated, origami-like folding process to form three-dimensional structures that accomplish cellular work.

But folding is a challenge and doesn't always go well, she adds. Misfolded proteins can cause disease, so cells have developed quality control strategies to guide, or chaperone it. "Often forgotten in the current active research landscape on protein folding and misfolding is the sea of small molecules in which proteins live in the cell," she says. It turns out that small molecules or ligands play a big role in guiding outcomes.

The new advance, described recently in Nature Chemical Biology, is based on ligand experiments by Gierasch's graduate student Karan Hingorani, with mathematical modeling by Evan Powers at the Scripps Research Institute, La Jolla, Calif., and further, confirmatory experiments in a lysosomal storage disease (LSD) model by Scott Garman and his graduate students Matthew Metcalf and Derrick Deming at UMass Amherst. The Garman lab is especially expert at revealing molecular structure by X-ray crystallography.

Karan, who won the campus molecular and cellular biology program's Byron Prize for "Best Thesis of the Year" for this work, observed in experiments with E. coli that when he added a small molecule called trimethoprim - a poor folding variant of the protein dihydrofolate reductase - "dramatically, the protein all ended up in the correctly folded form."

It became clear, Gierasch says, that "this protein has a decision point and the smaller molecule biased it toward correct folding. It can follow path to folding to the native state, the correct fold, or in the case of E. coli a misfolded protein will go to the cell's trash pit. This is 'kinetic partitioning' - the idea that the process is like water flowing in a pipe and it reaches a decision point where it can take one of two directions."

Garman adds, "It turns out that these ligands, which are very small molecules only about 100 daltons in size, are critical in determining the behavior of folding macromolecules on the order of 100 kilodaltons in size, that is 1,000 times larger. It's like the mouse telling the elephant what to do."

The work has important implications for developing future therapies based on pharmacological chaperones to treat misfolding diseases, he adds. "We had lots of cellular and biological observations but this paper takes all those examples and for the first time puts them on a firm mathematical foundation, with a clear picture of what is going on at the molecular level."

For this work, Hingorani was actively collaborating with Powers at Scripps to model the folding process in E. coli. Gierasch recalls, "His observation was a great test case to examine how the small molecule might be acting. When a model was created, the predictions recapitulated the experimental data very well, validating the approach." To generalize the finding, she and Hingorani took the result to Garman to apply it to biomedically important systems such as the LSDs he studies. Pharmacological chaperones are known to help LSD-associated proteins fold correctly and relieve disease symptoms.

Giearasch points out, "For the first time, we understand at the molecular level the way a pharmacological chaperone works. We knew that if you add a small molecule to these diseased cells it has an effect, but there had been no quantitative way of describe it." Garman adds, "Here's a case where a surprising result in a bacterial cell helps us understand what goes on in a human cell. You never know how a discovery will vault you to the next level of understanding."

The researchers say this work illustrates the value of supporting collaboration among biochemists and molecular biologists. Garman says, "This was a community effort and I think we all appreciate that the really interesting stuff comes when people from different backgrounds, with different expertise, get together to work on a shared problem."

Gierasch agrees. She adds that the combined computational modeling and experimental approach taken here "provide new insights into the characteristics of pharmacological chaperones that would make them most effective in correcting the defects in LSD-associated proteins. Long-term outcomes of this work include development of improved pharmacological chaperones and deeper understanding of how protein folding in the cell is impacted by the sea of small molecules and metabolites inside a cell."
This work was supported by the NIH's National Institute of General Medical Sciences grants to Gierasch and Institute of Diabetes and Digestive Diseases and Kidney Diseases grants to Garman.

University of Massachusetts at Amherst

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".