New methods find undiagnosed genetic diseases in electronic health records

March 15, 2018

Patients diagnosed with heart failure, stroke, infertility and kidney failure could actually be suffering from rare and undiagnosed genetic diseases.

And now researchers at Vanderbilt University Medical Center have found a way to search genetic data in electronic health records to identify these diseases in large populations so treatments can be tailored to the actual cause of the illness.

The implications for the findings reported today in the journal Science are broad and numerous - 14 percent of patients with genetic variants affecting the kidney had kidney transplants and 10 percent with another variant required liver transplants.

If their genetic cause had been diagnosed, those transplants might have been avoided.

"We started with a simple idea: look for a cluster of symptoms and diseases to find an undiagnosed underlying disease," said Josh Denny, MD, MS, professor of Biomedical Informatics and Medicine and director of the Center for Precision Medicine.

"Then we got really excited when we saw how we could systematize it across thousands of genetic diseases to figure out the impact of millions of genetic variants," he said.

The new method, developed by Denny, Lisa Bastarache, MS, and a team of collaborators, creates a phenotype risk score to find patterns of symptoms that may be caused by an underlying genetic variant - including some genetic variants whose effects were previously unknown.

The authors theorized that many patients currently diagnosed with issues such as heart failure, stroke, infertility or kidney failure might actually be suffering from a rare genetic disease. If that underlying disease could be identified, it may have a specific treatment preventing the symptoms from recurring or getting worse.

By merging traditional resources with newer data mining techniques, the authors assigned scores to 21,701 individuals based on how well their list of symptoms fit the clinical description of each of 1,204 different genetic diseases. The resulting phenotype risk score is high for individuals who are a close match and low for individuals who lack keys features of the disease.

"What the phenotype risk score shows us is that if you start with specific combinations of symptoms, the chances of finding a potentially causative genetic variant are pretty high. This is a really important step to using clinical genotyping to assess patient risk and inform more precise prevention and treatment of common conditions," said co-author Dan Roden, MD, Senior Vice President for Personalized Medicine.

The researchers found 18 associations between genetic variants and high phenotype risk scores. Some are well known to geneticists, such as two variants that cause cystic fibrosis, but most of the associations were for variants that have not previously been described.

Individuals for this discovery study were drawn from BioVU, one of the largest repositories of its kind linking DNA samples to de-identified electronic health records. The team then replicated their results at a second biobank at the Marshfield Clinic and confirmed them through tests in labs at VUMC and the University of Oklahoma.

The research also provides an important insight into the nature of disease inheritance. Until now, physicians have assumed that genetic diseases called "recessive" require two mutations (one from each parent) to become symptomatic. However, the researchers found that only one variant was enough for some diseases to impact a patient's health.

"In view of our findings, familiar medical categories such as 'complex' versus 'genetic', or 'dominant' versus 'recessive' begin to appear more like continuums," said Bastarache, lead data scientist with VUMC's Center for Precision Medicine.

As genetic testing becomes more common, there is a growing need to understand the impact of genetic variants. Only a fraction of the rare genetic variants found in human beings are well understood. This study shows that looking at outcomes in electronic health records can be helpful in deciding if a variant might be disease-associated.

"Phenotype risk scoring can easily be applied in any electronic medical record system that is linked to DNA," Bastarache said. "Our work looked at only a small sample of the human genome, about 6,000 variants. The opportunity for additional discoveries using this method is huge."
-end-
The study unites efforts of 27 authors: Lisa Bastarache, Jake Hughey, Joy Marlo, Sara Van Driest, Tracy McGregor, Jonathan Mosley, Quinn Wells, Michael Temple, Andrea Ramirez, Robert Carroll, Travis Osterman, Todd Edwards, Doug Ruderfer, Digna Edwards, Rizwan Hamin, Joy Cogan, Andrew Glazer, Wei-Qi Wei, QiPing Feng, Nancy Cox, Dan Roden, and Josh Denny working at VUMC; Scott Hebbring and Murray Brilliant at the Marshfield Clinic; and Wanke Zhao, Wanting Ho, and Zhizhuang Zhao at the University of Oklahoma. The work was supported by grants from the National Institutes of Health (LM010685, LM011939, LM007359, HG004603, HG006378, HG008672, HG008341, RR024975, TR000445, GM114128, GM115305, GM120523, HL133786, HG009086).

Vanderbilt University Medical Center

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.