Nav: Home

Design and validation of world-class multilayered thermal emitter using machine learning

March 15, 2019

NIMS, the University of Tokyo, Niigata University and RIKEN jointly designed a multilayered metamaterial that realizes ultra-narrowband wavelength-selective thermal emission by combining the machine learning (Bayesian optimization) and thermal emission properties calculations (electromagnetic calculation). The joint team then experimentally fabricated the designed metamaterial and verified the performance. These results may facilitate the development of highly efficient energy devices.

Thermal radiation, a phenomenon that an object emits heat as electromagnetic waves, is potentially applicable to a variety of energy devices, such as wavelength-selective heaters, infrared sensors and thermophotovoltaic generators. Highly efficient thermal emitters need to exhibit emission spectrum with narrow bands in practically usable wavelength range.. The development of such efficient thermal emitters has been targeted by many researches using metamaterials that can manipulate electromagnetic waves. However, most of them have taken an approach of characterizing the material structures selected empirically. , it has been difficult to identify the optimum structure from a vast number of candidates.

The joint research group developed a method of designing metamaterial structures with optimum thermal radiation performance using a combination of machine learning and the calculation of thermal emission properties. This project focused on easy-to-fabricate multilayered metamaterial structures composed of three types of materials in 18 layers of varying thickness. Application of this method to about eight billion candidate structures led to the prediction that a nanostructure composed of non-periodically arranged semiconductor and dielectric materials would have superior thermal radiation performance, which was contrary to the conventional knowledge. Then the research group actually fabricated the metamaterial structure and measured its thermal emission spectrum, and consequently demonstrated an extremely narrow thermal emission band. Measured in terms of the Q-factor (a parameter used to measure the width of thermal emission spectral bands), the newly designed nanostructure produced a Q-factor close to 200, when 100 had been considered the upper limit for conventional materials?an exceptionally narrow thermal emission spectral band.

This research demonstrated the effectiveness of machine learning in developing highly efficient thermal emission metamaterials. The development of metamaterials with desirable thermal emission spectra is expected to facilitate more efficient energy use throughout the society. Because the nanostructure design method developed is applicable to all kinds of materials, it may serve as an effective tool for the design of high-performance materials in the future.
This research project was carried out by a research group led by Junichiro Shiomi (Professor, Department of Mechanical Engineering, The University of Tokyo) Atsushi Sakurai (Associated Professor, Department of Mechanical and Production Engineering, Niigata University) and Koji Tsuda (Professor, Graduate School of Frontier Sciences, The University of Tokyo). The part of this project conducted at the CMI2 (Center for Materials Research by Information Integration) was supported by the JST "Materials Research by Information Integration" Initiative (MI2I), while the remainder of this project, conducted at the RIKEN Center for Advanced Intelligence Project (AIP), was supported by funding from MEXT.

This study was published in ACS Central Science, an online U.S. journal, as an "ASAP article" on January 22, 2019, Eastern Standard Time.

(Regarding this research)

Junichiro Shiomi
Professor, Department of Mechanical Engineering, The University of Tokyo;
Special Researcher, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science;
Visiting Scientist, RIKEN Center for Advanced Intelligence Project
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Tel: +81-3-5841-6283, Fax: +81-3-5841-0440

Atsushi Sakurai
Associate Professor, Department of Mechanical and Production Engineering, Niigata University;
Special Researcher, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
Tel: +81-25-262-7004, Fax: +81-25-262-7004

(Regarding JST projects)

COI Group
Department of Innovation Platform
Japan Science and Technology Agency
K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-8666, Japan
Tel: +81-3-6267-4752, Fax: +81-3-5214-8496

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
(Please change "=" to "@")

Public Relations Office

School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Tel: +81-3-5841-1790, Fax: +81-3-5841-0529

Public Relations Office

Graduate School of Frontier Sciences
The University of Tokyo
Tel: +81-4-7136-5450

Public Relations Office

Niigata University
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
Tel: +81-25-262-7000, Fax: +81-25-262-6539

Public Relations Office

Tel: +81-48-467-9272, Fax: +81-48-462-4715

Public Relations Division

Japan Science and Technology Agency
5-3 Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan
Tel: +81-3-5214-8404, Fax: +81-3-5214-8432

National Institute for Materials Science, Japan

Related Electromagnetic Waves Articles:

Remote control of blood sugar: Electromagnetic fields treat diabetes in animal models
Researchers at the University of Iowa may have discovered a safe new way to manage blood sugar non-invasively.
Wound-healing waves
How do cells in our bodies ask for directions? Without any maps to guide them, they still know where to go to heal wounds and renew our bodies.
Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.
Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena
Theoretical frameworks of chiroptical properties of electromagnetic materials and fields are reviewed.
A new way to fabricate MXene films that block electromagnetic interference
A multi-institution research team led by Andre ? D. Taylor, professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering demonstrated a novel approach to MXene fabrication that could lead to methods for at-scale production of MXene freestanding films: drop-casting onto prepatterned hydrophobic substrates.
A new MXene material shows extraordinary electromagnetic interference shielding ability
Researchers from Drexel University and the Korea Institute of Science and Technology have discovered a MXene material that presents exceptional electromagnetic interference shielding abilities.
Underused part of the electromagnetic spectrum gets optics boost from metamaterial
Terahertz radiation, or T-rays, has barely been exploited compared to most of the rest of the electromagnetic spectrum.
Torquato research links elastodynamic and electromagnetic wave phenomena
Princeton's Salvatore Torquato, the Lewis Bernard Professor of Natural Sciences and director of the Complex Materials Theory Group, published research this week in the Proceedings of the National Academy of Sciences (PNAS) linking wave phenomena that has never previously been linked.
Updated guidelines for exposure to high-frequency electromagnetic fields published in Health Physics
A set of updated, evidence-based guidelines defining safe levels of exposure to high-frequency electromagnetic fields (EMF) has been published in Health Physics, official journal of the Health Physics Society.
Mixed-signal hardware security thwarts powerful electromagnetic attacks
A Purdue University team developed technology to use mixed-signal circuits to embed critical information that is suppressed at a lower level.
More Electromagnetic Waves News and Electromagnetic Waves Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at