Nav: Home

A repellent odor inhibits the perception of a pleasant odor in vinegar flies

March 15, 2019

Vinegar flies are always exposed to odor mixtures when navigating in the natural environment. These mixtures often consist of odors which are both attractive and repellent, such as a source of food contaminated with toxic bacteria. The decision to approach or avoid is extremely important for the survival and reproduction of the animal. But so far, little is known about how different odors with opposing values in a mixture are processed simultaneously in the brain. In previous studies, the research groups led by Silke Sachse and Markus Knaden from the Max Planck Institute for Chemical Ecology have already shown that the olfactory channels that respond to attractive scents are different from those which are activated by repellent odors. In addition, two pleasant odors reinforce each other in certain neural circuits in the fly brain, which is in turn reflected in behavior (see press release "Food odor enhances male flies' attractiveness" - http://www.ice.mpg.de/ext/index.php?id= 1403 & L = 1 from 30.10.2017).

"In this study, we aimed to investigate how odor mixtures of opposite valence, that is, a mix of odors that are attractive and repellent, are processed and perceived," explains Ahmed Mohamed, lead author of the study, adding: "By taking advantage of the sophisticated genetics available in Drosophila, we elucidated the neural mechanism that enables the animal to evaluate such conflicting situations in order to take the appropriate decision."

The scientists exposed the vinegar fly Drosophila melanogaster to artificial odor mixtures, each containing an attractive and repellent odor, in defined ratios. By analyzing the brain activity of these opposing odor mixtures using functional imaging techniques, they were able to show that a repellent component in an odor mixture specifically inhibits the odor channels for attractants. "This inhibition correlates with a reduced attraction to the odor source" explains Silke Sachse. The underlying neuronal mechanism and the specific neurons involved could also be identified.

"Our data demonstrate a specific, inhibitory cross-talk in the olfactory center of the fly's brain. Using further genetic tools we were able to show that glomeruli, spherical functional units in the olfactory center, that respond to attractive odors, are linked via specific inhibitory neurons to the repellent-specific glomeruli," Ahmed Mohamed describes from the results.

However, not all odor mixtures show the same inhibitory effect. An exception is geosmin, the typical smell of toxic bacteria or mold. Geosmin is recognized in the fly brain by only one receptor type, and thus only a highly specific glomerulus is activated. "It is conceivable that this geosmin glomerulus has no strong interactions with other glomeruli and cannot influence them accordingly," speculates Markus Knaden, another author of the study. Similar specialized pathways have been described only for the detection of sex pheromones, carbon dioxide and iridomyrmecin, the latter of which is the smell specific to a parasitic wasp that infests vinegar flies.

The scientists assume that this neuronal mechanisms of the fly brain might also occur in other olfactory systems, such as the olfactory bulb of mammals, and therefore also potentially in humans. Such a mechanism could help protect not only flies, but also we as humans to recognize and avoid, for example, contaminated food that emits pleasant as well as bad odors. In the future, the researchers want to investigate whether this neuronal mechanism is modified by other factors, such as physiological state, e.g. hunger [KG/AO].
-end-


Max Planck Institute for Chemical Ecology

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".